Publications

Found 4 results
Filters: Author is E. Gross  [Clear All Filters]
2013
A. C. Santini, Santos, H. R. M., Gross, E., and Corrêa, R. X., Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil, vol. 12, pp. 655-664, 2013.
Achouak W, Christen R, Barakat M, Martel MH, et al. (1999). Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int. J. Syst. Bacteriol. 49 Pt 2: 787-794. http://dx.doi.org/10.1099/00207713-49-2-787 PMid:10319504   Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917   Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. (2011). GenBank. Nucleic Acids Res. 39: D32-D37. http://dx.doi.org/10.1093/nar/gkq1079 PMid:21071399 PMCid:3013681   Bramer CO, Vandamme P, da Silva LF, Gomez JG, et al. (2001). Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int. J. Syst. Evol. Microbiol. 51: 1709-1713. http://dx.doi.org/10.1099/00207713-51-5-1709 PMid:11594600   Chiarini L, Cescutti P, Drigo L, Impallomeni G, et al. (2004). Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB. J. Cyst. Fibros. 3: 165-172. http://dx.doi.org/10.1016/j.jcf.2004.04.004 PMid:15463903   Coenye T and Vandamme P (2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5: 719-729. http://dx.doi.org/10.1046/j.1462-2920.2003.00471.x PMid:12919407   Coenye T, Goris J, Spilker T, Vandamme P, et al. (2002). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J. Clin. Microbiol. 40: 2062-9. http://dx.doi.org/10.1128/JCM.40.6.2062-2069.2002 PMid:12037065 PMCid:130740   Coenye T, Henry D, Speert DP and Vandamme P (2004). Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst. Appl. Microbiol. 27: 623-627. http://dx.doi.org/10.1078/0723202042369992 PMid:15612618   Cole JR, Wang Q, Cardenas E, Fish J, et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145. http://dx.doi.org/10.1093/nar/gkn879 PMid:19004872 PMCid:2686447   Compant S, Nowak J, Coenye T, Clement C, et al. (2008). Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32: 607-626. http://dx.doi.org/10.1111/j.1574-6976.2008.00113.x PMid:18422616   Dalmastri C, Fiore A, Alisi C, Bevivino A, et al. (2003). A rhizospheric Burkholderia cepacia complex population: genotypic and phenotypic diversity of Burkholderia cenocepacia and Burkholderia ambifaria. FEMS Microbiol. Ecol. 46: 179-187. http://dx.doi.org/10.1016/S0168-6496(03)00211-3   Edwards K, Johnstone C and Thompson C (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. http://dx.doi.org/10.1093/nar/19.6.1349 PMid:2030957 PMCid:333874   Fred EB and Waksman SA (1928). Laboratory Manual of General Microbiology - With Special Reference to the Microorganisms of the Soil. McGraw-Hill Book Company, New York. PMid:16559297 PMCid:374984   Garau G, Yates RJ, Deiana P and Howieson JG (2009). Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol. Biochem. 41: 125-134. http://dx.doi.org/10.1016/j.soilbio.2008.10.011   Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, et al. (2011). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol. Plant Microbe Interact. 24: 1276-1288. http://dx.doi.org/10.1094/MPMI-06-11-0172 PMid:21830951   Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812   Kang JG, Shin SY, Kim MJ, Bajpai V, et al. (2004). Isolation and anti-fungal activities of 2-hydroxymethyl-chroman-4- one Produced by Burkholderia sp. MSSP. J. Antibiot. 57: 726-731. http://dx.doi.org/10.7164/antibiotics.57.726 PMid:15712667   Lane DJ (1991). 16S/23S rRNA Sequencing. In: Nucleic acid Thecniques in Bacterial Systematics (Stackebrandt E and Goodfellow M, eds.). Wiley, New York, 115-175.   Li X, Quan CS and Fan SD (2007). Antifungal activity of a novel compound from Burkholderia cepacia against plant pathogenic fungi. Lett. Appl. Microbiol. 45: 508-514. http://dx.doi.org/10.1111/j.1472-765X.2007.02221.x PMid:17958556   Maeda Y, Shinohara H, Kiba A, Ohnishi K, et al. (2006). Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56: 1031-1038. http://dx.doi.org/10.1099/ijs.0.64184-0 PMid:16627650   Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, et al. (2010). Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet. Mol. Res. 9: 2372-2380. http://dx.doi.org/10.4238/vol9-4gmr921 PMid:21157706   Mehnaz S (2011). Plant Growth-Promoting Bacteria Associated with Sugarcane. In: Bacteria in Agrobiology: Crop Ecosystems (Maheshwari DK, ed.). Springer, Berlin, 165-187. http://dx.doi.org/10.1007/978-3-642-18357-7_7   O'Sullivan LA and Mahenthiralingam E (2005). Biotechnological potential within the genus Burkholderia. Lett. Appl. Microbiol. 41: 8-11. http://dx.doi.org/10.1111/j.1472-765X.2005.01758.x PMid:15960745   Partida-Martinez LP, Groth I, Schmitt I, Richter W, et al. (2007). Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int. J. Syst. Evol. Microbiol. 57: 2583-2590. http://dx.doi.org/10.1099/ijs.0.64660-0 PMid:17978222   Payne GW, Vandamme P, Morgan SH, Lipuma JJ, et al. (2005). Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl. Environ. Microbiol. 71: 3917-3927. http://dx.doi.org/10.1128/AEM.71.7.3917-3927.2005 PMid:16000805 PMCid:1169057   Procopio RE, Araujo WL, Maccheroni W, Jr. and Azevedo JL (2009). Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet. Mol. Res. 8: 1408-1422. http://dx.doi.org/10.4238/vol8-4gmr691 PMid:19937585   Shaharoona B, Jamro GM, Zahir ZA, Arshad M, et al. (2007). Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 17: 1300-1307. PMid:18051598   Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, et al. (2012). Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb. Ecol. 63: 249-266. http://dx.doi.org/10.1007/s00248-011-9929-1 PMid:21850446   Sultan Z, Park K, Lee SY, Park JK, et al. (2008). Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87. J. Antibiot. 61: 420-425. http://dx.doi.org/10.1038/ja.2008.58 PMid:18776654   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Thompson JD, Gibson TJ and Higgins DG (2002). Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2: Unit.   Valverde A, Delvasto P, Peix A, Velazquez E, et al. (2006). Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil. Int. J. Syst. Evol. Microbiol. 56: 2421-2425. http://dx.doi.org/10.1099/ijs.0.64498-0 PMid:17012573   Vandamme P, Goris J, Chen WM, De Vos P, et al. (2002). Burkholderia tuberum sp. nov. & Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst. Appl. Microbiol. 25: 507-512. http://dx.doi.org/10.1078/07232020260517634 PMid:12583710   Vandamme P, Opelt K, Knochel N, Berg C, et al. (2007). Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int. J. Syst. Evol. Microbiol. 57: 2228-2235. http://dx.doi.org/10.1099/ijs.0.65142-0 PMid:17911288   Viallard V, Poirier I, Cournoyer B, Haurat J, et al. (1998). Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int. J. Syst. Bacteriol. 48 Pt 2: 549-563. http://dx.doi.org/10.1099/00207713-48-2-549 PMid:9731297   Wong-Villarreal A and Caballero-Mellado J (2010). Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides. Syst. Appl. Microbiol. 33: 35-43. http://dx.doi.org/10.1016/j.syapm.2009.10.004 PMid:19945811   Zhang H, Hanada S, Shigematsu T, Shibuya K, et al. (2000). Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)- degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50 Pt 2: 743-749. http://dx.doi.org/10.1099/00207713-50-2-743 PMid:10758884   Zhang L and Xie G (2007). Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol. Lett. 266: 231-235. http://dx.doi.org/10.1111/j.1574-6968.2006.00530.x PMid:17233735
2012
A. C. Fdos Santos, Marques, E. L. S., Gross, E., Souza, S. S., Dias, J. C. T., Brendel, M., and Rezende, R. P., Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments, vol. 11, pp. 190-201, 2012.
Amorim JH, Macena TN, Lacerda GV Jr, Rezende RP, et al. (2008). An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest. Genet. Mol. Res. 7: 1226-1232. http://dx.doi.org/10.4238/vol7-4gmr509 PMid:19065757 Arp DJ, Yeager CM and Hyman MR (2001). Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12: 81-103. http://dx.doi.org/10.1023/A:1012089908518 PMid:11710592 Atlas RM (1995). Biorremediation of Petroleum Pollutants. University of Louisville, Lousville. Bartha R and Pramer D (1965). Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci. 100: 68-70. http://dx.doi.org/10.1097/00010694-196507000-00011 Bock E, Koops HP, Harms H and Ahlers B (1991). The Biochemistry of Nitrifying Organisms. In: Variations in Autotrophic Life (Shively JM and Barton LL, eds.). Academic Press, San Diego, 171-200. Bordenave S, Goni-Urriza MS, Caumette P and Duran R (2007). Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097. http://dx.doi.org/10.1128/AEM.01352-07 PMid:17704271    PMCid:2075027 Bothe H, Jost G, Schloter M, Ward BB, et al. (2000). Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673-690. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00566.x PMid:11077158 Brazil (1965). Federal Law No. 4.771, of September 15, 1965. Brasília, 1965. Available at [http://www.lei.adv.br]. Accessed October 7, 2011. Burton SA and Prosser JI (2001). Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl. Environ. Microbiol. 67: 2952-2957. http://dx.doi.org/10.1128/AEM.67.7.2952-2957.2001 PMid:11425707    PMCid:92966 CONAMA (1985). Conselho Nacional do Meio Ambiente. Resolution nº 04/1985, of September 18, 1985. Available at [http://www.mma.gov.br/port/conama/res/res85/res0485.html]. Accessed October 07, 2011. Evans FF, Rosado AS, Sebastian GV, Casella R, et al. (2004). Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305. http://dx.doi.org/10.1016/j.femsec.2004.04.007 Gieseke A, Tarre S, Green M and de Beer D (2006). Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance. Appl. Environ. Microbiol. 72: 4283-4292. http://dx.doi.org/10.1128/AEM.00241-06 PMid:16751543    PMCid:1489657 Harayama S, Kasai Y and Hara A (2004). Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 15: 205-214. http://dx.doi.org/10.1016/j.copbio.2004.04.002 PMid:15193328 Heuer H, Krsek M, Baker P, Smalla K, et al. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241. PMid:9251210    PMCid:168621 Hollocher TC, Tate ME and Nicholas DJ (1981). Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J. Biol. Chem. 256: 10834-10836. PMid:7287737 Islam KR and Weil RR (2000). Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J. Soil Water Conserv. 55: 69-78. Jia Z and Conrad R (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11: 1658-1671. http://dx.doi.org/10.1111/j.1462-2920.2009.01891.x PMid:19236445 Junier P, Kim OS, Junier T, Ahn TS, et al. (2009). Community analysis of betaproteobacterial ammonia-oxidizing bacteria using the amoCAB operon. Appl. Microbiol. Biotechnol. 83: 175-188. http://dx.doi.org/10.1007/s00253-009-1923-x PMid:19274459    PMCid:2845890 Karlen DL, Andrews SS and Doran JW (2001). Soil quality: Current concepts and applications. Adv. Agron. 74: 1-40. http://dx.doi.org/10.1016/S0065-2113(01)74029-1 Kasai Y, Kishira H, Syutsubo K and Harayama S (2001). Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 3: 246-255. http://dx.doi.org/10.1046/j.1462-2920.2001.00185.x PMid:11359510 Kathiresan K and Bingham BL (2001). Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40: 81-251. http://dx.doi.org/10.1016/S0065-2881(01)40003-4 Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G, et al. (2006). The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: The Prokaryotes (Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, et al., eds.). Vol. 2. Springer, New York, 778-811. http://dx.doi.org/10.1007/0-387-30745-1_36 Leahy JG and Colwell RR (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305- 315. PMid:2215423    PMCid:372779 Maciel BM, Santos AC, Dias JC, Vidal RO, et al. (2009). Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Genet. Mol. Res. 8: 375-388. http://dx.doi.org/10.4238/vol8-1gmr559 PMid:19440973 McCaig AE, Embley TM and Prosser JI (1994). Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120: 363-367. http://dx.doi.org/10.1111/j.1574-6968.1994.tb07059.x PMid:8076810 Muyzer G, de Waal EC and Uitterlinden AG (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. PMid:7683183    PMCid:202176 Nicol GW, Leininger S, Schleper C and Prosser JI (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10: 2966-2978. http://dx.doi.org/10.1111/j.1462-2920.2008.01701.x PMid:18707610 Nicolaisen MH and Ramsing NB (2002). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203. http://dx.doi.org/10.1016/S0167-7012(02)00026-X Prosser JI (1989). Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181. http://dx.doi.org/10.1016/S0065-2911(08)60112-5 Rotthauwe JH, Witzel KP and Liesack W (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. PMid:9406389    PMCid:168793 Sayavedra-Soto LA, Hommes NG, Alzerreca JJ, Arp DJ, et al. (1998). Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiol. Lett. 167: 81-88. http://dx.doi.org/10.1111/j.1574-6968.1998.tb13211.x PMid:9785456 Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, et al. (1998). Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64: 2958-2965. PMid:9687457    PMCid:106799 Vanneli T and Hooper AB (1992). Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 58: 2321-2325. PMid:16348740    PMCid:195775 Vannelli T, Logan M, Arciero D and Hooper AB (1990). Degradation of halogenated aliphatics by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56: 1169-1171. PMid:2339874    PMCid:184364 Zhang LM, Wang M, Prosser JI, Zheng YM, et al. (2009). Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol. Ecol. 70: 52-61. http://dx.doi.org/10.1111/j.1574-6941.2009.00775.x PMid:19780828