Publications

Found 2 results
Filters: Author is T.-L. Yang  [Clear All Filters]
2012
Y. Guo, Wang, J. - T., Liu, H., Li, M., Yang, T. - L., Zhang, X. - W., Liu, Y. - Z., Tian, Q., and Deng, H. - W., Are bone mineral density loci associated with hip osteoporotic fractures? A validation study on previously reported genome-wide association loci in a Chinese population, vol. 11, pp. 202-210, 2012.
Cooper C, Campion G and Melton LJ, III (1992). Hip fractures in the elderly: a world-wide projection. Osteoporos. Int. 2: 285-289. http://dx.doi.org/10.1007/BF01623184 PMid:1421796 Cummings SR and Melton LJ (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet 359: 1761-1767. http://dx.doi.org/10.1016/S0140-6736(02)08657-9 Deng HW, Mahaney MC, Williams JT, Li J, et al. (2002). Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet. Epidemiol. 22: 12-25. http://dx.doi.org/10.1002/gepi.1040 PMid:11754470 Gullberg B, Johnell O and Kanis JA (1997). World-wide projections for hip fracture. Osteoporos. Int. 7: 407-413. http://dx.doi.org/10.1007/PL00004148 PMid:9425497 Guo Y, Tan LJ, Lei SF, Yang TL, et al. (2010a). Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet. 6: e1000806. http://dx.doi.org/10.1371/journal.pgen.1000806 PMid:20072603    PMCid:2794362 Guo Y, Zhang LS, Yang TL, Tian Q, et al. (2010b). IL21R and PTH may underlie variation of femoral neck bone mineral density as revealed by a genome-wide association study. J. Bone Miner. Res. 25: 1042-1048. PMid:19874204    PMCid:3153368 Hazenberg JG, Taylor D and Lee TC (2007). The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos. Int. 18: 1-8. http://dx.doi.org/10.1007/s00198-006-0222-y PMid:16972016 Johnell O, Kanis JA, Oden A, Johansson H, et al. (2005). Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20: 1185-1194. http://dx.doi.org/10.1359/JBMR.050304 PMid:15940371 Kanis JA, Oden A, Johnell O, Johansson H, et al. (2007). The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 18: 1033-1046. http://dx.doi.org/10.1007/s00198-007-0343-y PMid:17323110 Lau EM, Cooper C, Fung H, Lam D, et al. (1999). Hip fracture in Hong Kong over the last decade - a comparison with the UK. J. Public. Health Med. 21: 249-250. http://dx.doi.org/10.1093/pubmed/21.3.249 Lau EM, Lee JK, Suriwongpaisal P, Saw SM, et al. (2001). The incidence of hip fracture in four Asian countries: the Asian Osteoporosis Study (AOS). Osteoporos. Int. 12: 239-243. http://dx.doi.org/10.1007/s001980170135 PMid:11315243 Marchini J, Howie B, Myers S, McVean G, et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39: 906-913. http://dx.doi.org/10.1038/ng2088 PMid:17572673 Marshall D, Johnell O and Wedel H (1996). Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312: 1254-1259. http://dx.doi.org/10.1136/bmj.312.7041.1254 PMid:8634613    PMCid:2351094 Melton LJ III (2000). Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner. Res. 15: 2309-2314. http://dx.doi.org/10.1359/jbmr.2000.15.12.2309 PMid:11127196 Melton LJ III (2003). Adverse outcomes of osteoporotic fractures in the general population. J. Bone Miner. Res. 18: 1139- 1141. http://dx.doi.org/10.1359/jbmr.2003.18.6.1139 PMid:12817771 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, et al. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904-909. http://dx.doi.org/10.1038/ng1847 PMid:16862161 Richards JB, Rivadeneira F, Inouye M, Pastinen TM, et al. (2008). Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371: 1505-1512. http://dx.doi.org/10.1016/S0140-6736(08)60599-1 Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, et al. (2009). Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41: 1199-1206. http://dx.doi.org/10.1038/ng.446 PMid:19801982    PMCid:2783489 Siris ES (2006). Patients with hip fracture: what can be improved? Bone 38: S8-12. http://dx.doi.org/10.1016/j.bone.2005.11.014 PMid:16406848 Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, et al. (2008). Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358: 2355-2365. http://dx.doi.org/10.1056/NEJMoa0801197 PMid:18445777 Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, et al. (2009). New sequence variants associated with bone mineral density. Nat. Genet. 41: 15-17. http://dx.doi.org/10.1038/ng.284 PMid:19079262 Styrkarsdottir U, Halldorsson BV, Gudbjartsson DF, Tang NL, et al. (2010). European bone mineral density loci are also associated with BMD in East-Asian populations. PLoS One 5: e13217. http://dx.doi.org/10.1371/journal.pone.0013217 PMid:20949110    PMCid:2951352
H. Yan, Guo, Y., Yang, T. - L., Zhao, L. - J., and Deng, H. - W., A family-based association study identified CYP17 as a candidate gene for obesity susceptibility in Caucasians, vol. 11, pp. 1967-1974, 2012.
Abecasis GR, Cherny SS, Cookson WO and Cardon LR (2002). Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30: 97-101. http://dx.doi.org/10.1038/ng786 PMid:11731797   Ahlgren R, Yanase T, Simpson ER, Winter JS, et al. (1992). Compound heterozygous mutations (Arg 239→stop, Pro 342→Thr) in the CYP17 (P45017 alpha) gene lead to ambiguous external genitalia in a male patient with partial combined 17 alpha-hydroxylase/17,20-lyase deficiency. J. Clin. Endocrinol. Metab. 74: 667-672. http://dx.doi.org/10.1210/jc.74.3.667 PMid:1740503   Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265. http://dx.doi.org/10.1093/bioinformatics/bth457 PMid:15297300   Bischof LJ, Kagawa N and Waterman MR (1998). The bovine CYP17 promoter contains a transcriptional regulatory element cooperatively bound by tale homeodomain proteins. Endocr. Res. 24: 489-495. http://dx.doi.org/10.3109/07435809809032637 PMid:9888529   Dammer EB, Leon A and Sewer MB (2007). Coregulator exchange and sphingosine-sensitive cooperativity of steroidogenic factor-1, general control nonderepressed 5, p54, and p160 coactivators regulate cyclic adenosine 3',5'-monophosphate-dependent cytochrome P450c17 transcription rate. Mol. Endocrinol. 21: 415-438. http://dx.doi.org/10.1210/me.2006-0361 PMid:17121866   Demeter AM, Michael MD, Kilgore MW and Simpson ER (1996). 17alpha-Hydroxylase gene expression in the bovine ovary: mechanisms regulating expression differ from those in adrenal cells. J. Steroid Biochem. Mol. Biol. 59: 21-29. http://dx.doi.org/10.1016/S0960-0760(96)00088-X   Deng HW, Deng H, Liu YJ, Liu YZ, et al. (2002). A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am. J. Hum. Genet. 70: 1138-1151. http://dx.doi.org/10.1086/339934 PMid:11923910 PMCid:447591   Ewens WJ and Spielman RS (1995). The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet. 57: 455-464. PMid:7668272 PMCid:1801556   Gambacciani M, Ciaponi M, Cappagli B, De Simone L, et al. (2001). Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas 39: 125-132. http://dx.doi.org/10.1016/S0378-5122(01)00194-3   Han DH, Hansen PA, Chen MM and Holloszy JO (1998). DHEA treatment reduces fat accumulation and protects against insulin resistance in male rats. J. Gerontol. A Biol. Sci. Med. Sci. 53: B19-B24. http://dx.doi.org/10.1093/gerona/53A.1.B19 PMid:9467418   Hansen PA, Han DH, Nolte LA, Chen M, et al. (1997). DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet. Am. J. Physiol. 273: R1704-R1708. PMid:9374813   Horvath S, Xu X, Lake SL, Silverman EK, et al. (2004). Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet. Epidemiol. 26: 61-69. http://dx.doi.org/10.1002/gepi.10295 PMid:14691957   James PT (2004). Obesity: the worldwide epidemic. Clin. Dermatol. 22: 276-280. http://dx.doi.org/10.1016/j.clindermatol.2004.01.010 PMid:15475226   Khan LK and Bowman BA (1999). Obesity: a major global public health problem. Annu. Rev. Nutr. 19: xiii-xvii. http://dx.doi.org/10.1146/annurev.nutr.19.1.0 PMid:10448513   Kopelman PG (2000). Obesity as a medical problem. Nature 404: 635-643. PMid:10766250   Laflamme N, Leblanc JF, Mailloux J, Faure N, et al. (1996). Mutation R96W in cytochrome P450c17 gene causes combined 17 alpha-hydroxylase/17-20-lyase deficiency in two French Canadian patients. J. Clin. Endocrinol. Metab. 81: 264-268. http://dx.doi.org/10.1210/jc.81.1.264 PMid:8550762   Lund J, Bakke M, Mellgren G, Morohashi K, et al. (1997). Transcriptional regulation of the bovine CYP17 gene by cAMP. Steroids 62: 43-45. http://dx.doi.org/10.1016/S0039-128X(96)00157-2   Mattiasson I, Rendell M, Tornquist C, Jeppsson S, et al. (2002). Effects of estrogen replacement therapy on abdominal fat compartments as related to glucose and lipid metabolism in early postmenopausal women. Horm. Metab. Res. 34: 583-588. http://dx.doi.org/10.1055/s-2002-35420 PMid:12439787   Maynar M, Mahedero G, Maynar I, Maynar JI, et al. (2001). Menopause-induced changes in lipid fractions and total fatty acids in plasma. Endocr. Res. 27: 357-365. http://dx.doi.org/10.1081/ERC-100106013 PMid:11678583   Morales AJ, Haubrich RH, Hwang JY, Asakura H, et al. (1998). The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin. Endocrinol. 49: 421-432. http://dx.doi.org/10.1046/j.1365-2265.1998.00507.x   O'Connell JR and Weeks DE (1998). PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am. J. Hum. Genet. 63: 259-266. http://dx.doi.org/10.1086/301904 PMid:9634505 PMCid:1377228   Puder JJ, Monaco SE, Sen GS, Wang J, et al. (2006). Estrogen and exercise may be related to body fat distribution and leptin in young women. Fertil. Steril. 86: 694-699. http://dx.doi.org/10.1016/j.fertnstert.2006.02.085 PMid:16814292   Tchernof A, Calles-Escandon J, Sites CK and Poehlman ET (1998). Menopause, central body fatness, and insulin resistance: effects of hormone-replacement therapy. Coron. Artery Dis. 9: 503-511. http://dx.doi.org/10.1097/00019501-199809080-00006 PMid:9847982   Villareal DT and Holloszy JO (2004). Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA 292: 2243-2248. http://dx.doi.org/10.1001/jama.292.18.2243 PMid:15536111   Villareal DT and Holloszy JO (2006). DHEA enhances effects of weight training on muscle mass and strength in elderly women and men. Am. J. Physiol. Endocrinol. Metab. 291: E1003-E1008. http://dx.doi.org/10.1152/ajpendo.00100.2006 PMid:16787962   Yanase T, Kagimoto M, Suzuki S, Hashiba K, et al. (1989). Deletion of a phenylalanine in the N-terminal region of human cytochrome P-450(17 alpha) results in partial combined 17 alpha-hydroxylase/17,20-lyase deficiency. J. Biol. Chem. 264: 18076-18082. PMid:2808364