Publications

Found 18 results
Filters: Author is V. Azevedo  [Clear All Filters]
2012
M. S. P. de Azevedo, Rocha, C. S., Electo, N., Pontes, D. S., Molfetta, J. B., Gonçalves, E. D. C., Azevedo, V., Silva, C. L., and Miyoshi, A., Cytoplasmic and extracellular expression of pharmaceutical-grade mycobacterial 65-kDa heat shock protein in Lactococcus lactis, vol. 11, pp. 1146-1157, 2012.
Bermudez-Humaran LG, Langella P, Commissaire J, Gilbert S, et al. (2003). Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol. Lett. 224: 307-313. http://dx.doi.org/10.1016/S0378-1097(03)00475-0   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Brondyk WH (2009). Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol. 463: 131-147. http://dx.doi.org/10.1016/S0076-6879(09)63011-1   Bryant CE, Spring DR, Gangloff M and Gay NJ (2010). The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 8: 8-14. PMid:19946286   Cardoso LS, Araujo MI, Goes AM, Pacifico LG, et al. (2007). Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microb. Cell Fact. 6: 1. http://dx.doi.org/10.1186/1475-2859-6-1 PMid:17201926 PMCid:1766364   Demain AL and Vaishnav P (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27: 297-306. http://dx.doi.org/10.1016/j.biotechadv.2009.01.008 PMid:19500547   Du Y, Gisselberg JE, Johnson JD, Lee PJ, et al. (2010). Lactococcus lactis fabH, encoding beta-ketoacyl-acyl carrier protein synthase, can be functionally replaced by the Plasmodium falciparum congener. Appl. Environ. Microbiol. 76: 3959-3966. http://dx.doi.org/10.1128/AEM.00170-10 PMid:20418430 PMCid:2893474   Frelet-Barrand A, Boutigny S, Kunji ER and Rolland N (2010). Membrane protein expression in Lactococcus lactis. Methods Mol. Biol. 601: 67-85. http://dx.doi.org/10.1007/978-1-60761-344-2_5 PMid:20099140   Gao B and Tsan MF (2003). Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278: 174-179. http://dx.doi.org/10.1074/jbc.M208742200 PMid:12403778   Jamet E (2001). Etude de L'expression et de la Régulation des Gènes Impliqués Dans le Métabolisme Carboné Chez Lactococcus lactis. Institut National Agronomique de Paris-Grignon, Paris. PMCid:99637   Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. http://dx.doi.org/10.1038/227680a0 PMid:5432063   Le Loir Y, Gruss A, Ehrlich SD and Langella P (1994). Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J. Bacteriol. 176: 5135-5139. PMid:8051029 PMCid:196356   Le Loir Y, Gruss A, Ehrlich SD and Langella P (1998). A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 180: 1895-1903. PMid:9537390 PMCid:107105   Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, et al. (2005). Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4: 2. http://dx.doi.org/10.1186/1475-2859-4-2 PMid:15631634 PMCid:545053   Lindquist S and Craig EA (1988). The heat-shock proteins. Annu. Rev. Genet. 22: 631-677. http://dx.doi.org/10.1146/annurev.ge.22.120188.003215 PMid:2853609   Lowrie DB, Silva CL, Colston MJ, Ragno S, et al. (1997). Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15: 834-838. http://dx.doi.org/10.1016/S0264-410X(97)00073-X   Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, et al. (2007). Methods of endotoxin removal from biological preparations: a review. J. Pharm. Pharm. Sci. 10: 388-404. PMid:17727802   Majde JA (1993). Microbial cell-wall contaminants in peptides: a potential source of physiological artifacts. Peptides 14: 629-632. http://dx.doi.org/10.1016/0196-9781(93)90155-A   Marinho FA, Pacifico LG, Miyoshi A, Azevedo V, et al. (2010). An intranasal administration of Lactococcus lactis strains expressing recombinant interleukin-10 modulates acute allergic airway inflammation in a murine model. Clin. Exp. Allergy 40: 1541-1551. http://dx.doi.org/10.1111/j.1365-2222.2010.03502.x PMid:20412136   Mierau I and Kleerebezem M (2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68: 705-717. http://dx.doi.org/10.1007/s00253-005-0107-6 PMid:16088349   Miyoshi A, Jamet E, Commissaire J, Renault P, et al. (2004). A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol. Lett. 239: 205-212. http://dx.doi.org/10.1016/j.femsle.2004.08.018 PMid:15476967   Morello E, Bermudez-Humaran LG, Llull D, Sole V, et al. (2008). Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J. Mol. Microbiol. Biotechnol. 14: 48-58. http://dx.doi.org/10.1159/000106082 PMid:17957110   Osterloh A, Kalinke U, Weiss S, Fleischer B, et al. (2007). Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J. Biol. Chem. 282: 4669-4680. http://dx.doi.org/10.1074/jbc.M608666200 PMid:17164250   Poquet I, Saint V, Seznec E, Simoes N, et al. (2000). HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol. 35: 1042-1051. http://dx.doi.org/10.1046/j.1365-2958.2000.01757.x PMid:10712686   Rajaiah R and Moudgil KD (2009). Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun. Rev. 8: 388-393. http://dx.doi.org/10.1016/j.autrev.2008.12.004 PMid:19121415 PMCid:2668694   Salek-Ardakani S, Stuart AD, Arrand JE, Lyons S, et al. (2002). High level expression and purification of the Epstein-Barr virus encoded cytokine viral interleukin 10: efficient removal of endotoxin. Cytokine 17: 1-13. http://dx.doi.org/10.1006/cyto.2001.0990 PMid:11886166   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, New York.   Santos-Junior RR, Sartori A, De Franco M, Filho Ribeiro OG, et al. (2005). Immunomodulation and protection induced by DNA-hsp65 vaccination in an animal model of arthritis. Hum. Gene Ther. 16: 1338-1345. http://dx.doi.org/10.1089/hum.2005.16.1338 PMid:16259568   Sigler PB, Xu Z, Rye HS, Burston SG, et al. (1998). Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67: 581-608. http://dx.doi.org/10.1146/annurev.biochem.67.1.581 PMid:9759498   Silva CL (1999). The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes. Infect. 1: 429-435. http://dx.doi.org/10.1016/S1286-4579(99)80046-X   Terpe K (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72: 211-222. http://dx.doi.org/10.1007/s00253-006-0465-8 PMid:16791589   Tsan MF and Gao B (2009). Heat shock proteins and immune system. J. Leukoc. Biol. 85: 905-910. http://dx.doi.org/10.1189/jlb.0109005 PMid:19276179   van Asseldonk M, Rutten G, Oteman M, Siezen RJ, et al. (1990). Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95: 155-160. http://dx.doi.org/10.1016/0378-1119(90)90428-T   Van Huynegem K, Loos M and Steidler L (2009). Immunomodulation by genetically engineered lactic acid bacteria. Front Biosci. 14: 4825-4835. http://dx.doi.org/10.2741/3571 PMid:19482589   Victora GD, Socorro-Silva A, Volsi EC, Abdallah K, et al. (2009). Immune response to vaccination with DNA-Hsp65 in a phase I clinical trial with head and neck cancer patients. Cancer Gene Ther. 16: 598-608. http://dx.doi.org/10.1038/cgt.2009.9 PMid:19197326   Wells JM and Mercenier A (2008). Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6: 349-362. http://dx.doi.org/10.1038/nrmicro1840 PMid:18345021
E. M. S. Dorneles, Santana, J. A., Andrade, G. I., Santos, E. L. S., Guimarães, A. S., Mota, R. A., Santos, A. S., Miyoshi, A., Azevedo, V., Gouveia, A. M. G., Lage, A. P., and Heinemann, M. B., Molecular characterization of Corynebacterium pseudotuberculosis isolated from goats using ERIC-PCR, vol. 11. pp. 2051-2059, 2012.
Baird GJ and Fontaine MC (2007). Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol. 137: 179-210. http://dx.doi.org/10.1016/j.jcpa.2007.07.002 PMid:17826790   Connor KM, Quirie MM, Baird G and Donachie W (2000). Characterization of United Kingdom isolates of Corynebacterium pseudotuberculosis using pulsed-field gel electrophoresis. J. Clin. Microbiol. 38: 2633-2637. PMid:10878055 PMCid:86984   Coyle MB, Hollis DG and Groman NB (1985). Corynebacterium spp. and Other Coryneform Organisms. In: Manual of Clinical Microbiology. (Lennette EH, Balows A, Hausler WJ and Shadomy HJ, eds.). 4th edn. American Society for Microbiology, Washington, 198-199.   Empresa Brasileira de Pesquisa Agropecuária (Embrapa) (2000). Vacina da EBDA é Novidade Mundial. Boletim Técnico, Maio/Junho.   Foley JE, Spier SJ, Mihalyi J, Drazenovich N, et al. (2004). Molecular epidemiologic features of Corynebacterium pseudotuberculosis isolated from horses. Am. J. Vet. Res. 65: 1734-1737. http://dx.doi.org/10.2460/ajvr.2004.65.1734 PMid:15631043   Guimarães AS, Seyffert N, Bastos BL, Portela RWD, et al. (2009). Caseous lymphadenitis in sheep flocks of the state of Minas Gerais, Brazil: prevalence and management surveys. Small Ruminant Res. 87: 86-91. http://dx.doi.org/10.1016/j.smallrumres.2009.09.027   Guimarães AS, Carmo FB, Pauletti RB, Seyffert N, et al. (2011a). Caseous lymphadenitis: epidemiology, diagnosis, and control. Inst. Integr. Omics Appl. Biotechnol. J. 2: 33-43.   Guimarães AS, Dorneles EM, Andrade GI, Lage AP, et al. (2011b). Molecular characterization of Corynebacterium pseudotuberculosis isolates using ERIC-PCR. Vet. Microbiol. 153: 299-306. http://dx.doi.org/10.1016/j.vetmic.2011.06.002 PMid:21733644   Hunter PR (1990). Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol. 28: 1903-1905. PMid:2229371 PMCid:268075   Hunter PR and Gaston MA (1988). Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J. Clin. Microbiol. 26: 2465-2466. PMid:3069867 PMCid:266921   Instituto Brasileiro de Geografia e Estatística (IBGE) (2007). Diretoria de Pesquisas, Coordenação de Agropecuária, Pesquisa da Pecuária Municipal 2007. Available at [http://www.ibge.gov.br]. Accessed July, 2011.   MacFaddin JF (1980). Pruebas Bioquímicas para la Identificacion de Bactérias de Importância Clinica. Panamericana, Buenos Aires.   Pacheco LGC, Pena RR, Castro TLP, Dorella FA, et al. (2007). Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J. Med. Microbiol. 56: 480-486. http://dx.doi.org/10.1099/jmm.0.46997-0 PMid:17374887   Pinheiro RR, Gouveia AMG, Alves FSF and Haddad JPA (2000). Aspectos epidemiológicos da caprinocultura cearense. Arq. Bras. Med. Vet. Zootec. 52: 534-543. http://dx.doi.org/10.1590/S0102-09352000000500021   Pitcher DG, Saunders NA and Owen RJ (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8: 151-156. http://dx.doi.org/10.1111/j.1472-765X.1989.tb00262.x   Seyffert N, Guimaraes AS, Pacheco LG, Portela RW, et al. (2010). High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. Res. Vet. Sci. 88: 50-55. http://dx.doi.org/10.1016/j.rvsc.2009.07.002 PMid:19665155   Struelens MJ (1998). Molecular epidemiologic typing systems of bacterial pathogens: current issues and perpectives. Memórias do Instituto Oswaldo Cruz 93: 581-586. http://dx.doi.org/10.1590/S0074-02761998000500004   Sutherland SS, Hart RA and Buller NB (1993). Ribotype analysis of Corynebacterium pseudotuberculosis isolates from sheep and goats. Aust. Vet. J. 70: 454-456. http://dx.doi.org/10.1111/j.1751-0813.1993.tb00851.x PMid:7906938   Sutherland SS, Hart RA and Buller NB (1996). Genetic differences between nitrate-negative and nitrate-positive C. pseudotuberculosis strains using restriction fragment length polymorphisms. Vet. Microbiol. 49: 1-9. http://dx.doi.org/10.1016/0378-1135(95)00146-8   Versalovic J, Koeuth T and Lupski JR (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19: 6823-6831. http://dx.doi.org/10.1093/nar/19.24.6823 PMid:1762913 PMCid:329316
2011
A. C. Pinto, Melo-Barbosa, H. P., Miyoshi, A., Silva, A., and Azevedo, V., Application of RNA-seq to reveal the transcript profile in bacteria, vol. 10. pp. 1707-1718, 2011.
Albrecht M, Sharma CM, Reinhardt R, Vogel J, et al. (2010). Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38: 868-877. http://dx.doi.org/10.1093/nar/gkp1032 PMid:19923228    PMCid:2817459 Anders S and Huber W (2010). Differential expression analysis for sequence count data. Genome Biol. 11: R106. http://dx.doi.org/10.1186/gb-2010-11-10-r106 PMid:20979621 Anonymous (2011). Applied Biosystems by Life Technologies. Available at [http://www.appliedbiosystems.com.br]. Accessed May 26, 2011. Beaume M, Hernandez D, Docquier M, Delucinge-Vivier C, et al. (2011). Orientation and expression of methicillin-resistant Staphylococcus aureus small RNAs by direct multiplexed measurements using the nCounter of NanoString technology. J. Microbiol. Methods 84: 327-334. http://dx.doi.org/10.1016/j.mimet.2010.12.025 PMid:21195730 Bejerano-Sagie M and Xavier KB (2007). The role of small RNAs in quorum sensing. Curr. Opin. Microbiol. 10: 189-198. http://dx.doi.org/10.1016/j.mib.2007.03.009 PMid:17387037 Bentley SD (2011). Identification, variation and transcription of pneumococcal repeat sequences. BMC Genom. 12: 120. http://dx.doi.org/10.1186/1471-2164-12-120 PMid:21333003    PMCid:3049150 Brantl S (2007). Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr. Opin. Microbiol. 10: 102-109. http://dx.doi.org/10.1016/j.mib.2007.03.012 PMid:17387036 Bullard JH, Purdom E, Hansen KD and Dudoit S (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94. http://dx.doi.org/10.1186/1471-2105-11-94 PMid:20167110    PMCid:2838869 Camarena L, Bruno V, Euskirchen G, Poggio S, et al. (2010). Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 6: e1000834. http://dx.doi.org/10.1371/journal.ppat.1000834 PMid:20368969    PMCid:2848557 Chen Y, Souaiaia T and Chen T (2009). PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics 25: 2514-2521. http://dx.doi.org/10.1093/bioinformatics/btp486 PMid:19675096    PMCid:2752623 Chevreux B, Pfisterer T, Drescher B, Driesel AJ, et al. (2004). Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14: 1147-1159. http://dx.doi.org/10.1101/gr.1917404 PMid:15140833    PMCid:419793 Clement NL, Snell Q, Clement MJ, Hollenhorst PC, et al. (2010). The GNUMAP algorithm: unbiased probabilistic mapping of oligonucleotides from next-generation sequencing. Bioinformatics 26: 38-45. http://dx.doi.org/10.1093/bioinformatics/btp614 PMid:19861355 Croucher NJ, Vernikos GS, Parkhill J and Bentley SD (2011). Identification, variation and transcription of pneumococcal repeat sequences. BMC Genom. 12: 120. http://dx.doi.org/10.1186/1471-2164-12-120 PMid:21333003    PMCid:3049150 Drevinek P, Holden MT, Ge Z, Jones AM, et al. (2008). Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect. Dis. 8: 121. http://dx.doi.org/10.1186/1471-2334-8-121 PMid:18801206    PMCid:2559838 Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, et al. (2010). Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J. Bacteriol. 192: 2359-2372. http://dx.doi.org/10.1128/JB.01445-09 PMid:20190049    PMCid:2863471 Goncalves A, Tikhonov A, Brazma A and Kapushesky M (2011). A pipeline for RNA-seq data processing and quality assessment. Bioinformatics 27: 867-869. http://dx.doi.org/10.1093/bioinformatics/btr012 PMid:21233166    PMCid:3051320 Guell M, van Noort V, Yus E, Chen WH, et al. (2009). Transcriptome complexity in a genome-reduced bacterium. Science 326: 1268-1271. http://dx.doi.org/10.1126/science.1176951 PMid:19965477 Hall N (2007). Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. 210: 1518-1525. http://dx.doi.org/10.1242/jeb.001370 PMid:17449817 Homer N, Merriman B and Nelson SF (2009). BFAST: an alignment tool for large scale genome resequencing. PLoS One 4: e7767. http://dx.doi.org/10.1371/journal.pone.0007767 PMid:19907642    PMCid:2770639 Isabella VM and Clark VL (2011). Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genom. 12: 51. http://dx.doi.org/10.1186/1471-2164-12-51 PMid:21251255    PMCid:3032703 Li H and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. http://dx.doi.org/10.1093/bioinformatics/btp324 PMid:19451168    PMCid:2705234 Li R, Li Y, Kristiansen K and Wang J (2008). SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713- 714. http://dx.doi.org/10.1093/bioinformatics/btn025 PMid:18227114 Li R, Yu C, Li Y, Lam TW, et al. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: 1966-1967. Koide T, Reiss DJ, Bare JC, Pang WL, et al. (2009). Prevalence of transcription promoters within archaeal operons and coding sequences. Mol. Syst. Biol. 5: 285. http://dx.doi.org/10.1038/msb.2009.54 Langmead B, Trapnell C, Pop M and Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: R25. http://dx.doi.org/10.1186/gb-2009-10-3-r25 PMid:19261174    PMCid:2690996 Langmead B, Hansen KD and Leek JT (2010). Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol. 11: R83. http://dx.doi.org/10.1186/gb-2010-11-8-r83 PMid:20701754    PMCid:2945785 MacLean D, Jones JD and Studholme DJ (2009). Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat. Rev. Microbiol. 7: 287-296. PMid:19287448 Mane SP, Evans C, Cooper KL, Crasta OR, et al. (2009). Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing. BMC Genom. 10: 264. http://dx.doi.org/10.1186/1471-2164-10-264 PMid:19523228    PMCid:2707382 Marioni JC, Mason CE, Mane SM, Stephens M, et al. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18: 1509-1517. http://dx.doi.org/10.1101/gr.079558.108 PMid:18550803    PMCid:2527709 Martin J, Zhu W, Passalacqua KD, Bergman N, et al. (2010). Bacillus anthracis genome organization in light of whole transcriptome sequencing. BMC Bioinformatics 11 (Suppl 3): S10. http://dx.doi.org/10.1186/1471-2105-11-S3-S10 PMid:20438648    PMCid:2863060 Moody DE (2001). Genomics techniques: an overview of methods for the study of gene expression. J. Anim. Sci. 79 (Suppl E): E128-E135. Morozova O and Marra MA (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics 92: 255-264. http://dx.doi.org/10.1016/j.ygeno.2008.07.001 PMid:18703132 Mortazavi A, Williams BA, McCue K, Schaeffer L, et al. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 PMid:18516045 Nagalakshmi U, Wang Z, Waern K, Shou C, et al. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344-1349. http://dx.doi.org/10.1126/science.1158441 PMid:18451266    PMCid:2951732 NCBI (2011). National Center for Biotechnology Information. Available at [http://www.ncbi.nlm.nih.gov/genomes]. Accessed June 30, 2011. Oliver HF, Orsi RH, Ponnala L, Keich U, et al. (2009). Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genom. 10: 641. http://dx.doi.org/10.1186/1471-2164-10-641 PMid:20042087    PMCid:2813243 Oshlack A and Wakefield MJ (2009). Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct. 4: 14. http://dx.doi.org/10.1186/1745-6150-4-14 PMid:19371405    PMCid:2678084 Oshlack A, Robinson MD and Young MD (2010). From RNA-seq reads to differential expression results. Genome Biol. 11: 220. http://dx.doi.org/10.1186/gb-2010-11-12-220 PMid:21176179 Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, et al. (2009). Structure and complexity of a bacterial transcriptome. J. Bacteriol. 191: 3203-3211. http://dx.doi.org/10.1128/JB.00122-09 PMid:19304856    PMCid:2687165 Perkins TT, Kingsley RA, Fookes MC, Gardner PP, et al. (2009). A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet. 5: e1000569. http://dx.doi.org/10.1371/journal.pgen.1000569 PMid:19609351    PMCid:2704369 Philippe N, Boureux A, Brehelin L, Tarhio J, et al. (2009). Using reads to annotate the genome: influence of length, background distribution, and sequence errors on prediction capacity. Nucleic Acids Res. 37: e104. http://dx.doi.org/10.1093/nar/gkp492 PMid:19531739    PMCid:2731892 Roberts A, Trapnell C, Donaghey J, Rinn JL, et al. (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12: R22. http://dx.doi.org/10.1186/gb-2011-12-3-r22 PMid:21410973    PMCid:3129672 Robinson MD and Oshlack A (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11: R25. http://dx.doi.org/10.1186/gb-2010-11-3-r25 PMid:20196867    PMCid:2864565 Rumble SM, Lacroute P, Dalca AV, Fiume M, et al. (2009). SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol. 5: e1000386. http://dx.doi.org/10.1371/journal.pcbi.1000386 PMid:19461883    PMCid:2678294 Schatz MC (2009). CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25: 1363-1369. http://dx.doi.org/10.1093/bioinformatics/btp236 PMid:19357099    PMCid:2682523 Sharma CM, Hoffmann S, Darfeuille F, Reignier J, et al. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464: 250-255. http://dx.doi.org/10.1038/nature08756 PMid:20164839 Shendure J and Ji H (2008). Next-generation DNA sequencing. Nat. Biotechnol. 26: 1135-1145. http://dx.doi.org/10.1038/nbt1486 PMid:18846087 Siezen RJ, Wilson G and Todt T (2010). Prokaryotic whole-transcriptome analysis: deep sequencing and tiling arrays. Microb. Biotechnol. 3: 125-130. http://dx.doi.org/10.1111/j.1751-7915.2010.00166.x PMid:21255314 Sorek R and Cossart P (2010). Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11: 9-16. http://dx.doi.org/10.1038/nrg2695 PMid:19935729 Teng X and Xiao H (2009). Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci. China C Life Sci. 52: 7-16. http://dx.doi.org/10.1007/s11427-009-0012-9 PMid:19152079 Toledo-Arana A, Repoila F and Cossart P (2007). Small noncoding RNAs controlling pathogenesis. Curr. Opin. Microbiol. 10: 182-188. http://dx.doi.org/10.1016/j.mib.2007.03.004 PMid:17383223 Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, et al. (2009). The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950-956. http://dx.doi.org/10.1038/nature08080 PMid:19448609 van Vliet AH (2010). Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol. Lett. 302: 1-7. http://dx.doi.org/10.1111/j.1574-6968.2009.01767.x PMid:19735299 Wang Z, Gerstein M and Snyder M (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 57-63. http://dx.doi.org/10.1038/nrg2484 PMid:19015660    PMCid:2949280 Weese D, Emde AK, Rausch T, Döring A, et al. (2009). RazerS - fast read mapping with sensitivity control. Genome Res. 19: 1646-1654. http://dx.doi.org/10.1101/gr.088823.108 PMid:19592482    PMCid:2752123 Wu TD and Nacu S (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873-881. http://dx.doi.org/10.1093/bioinformatics/btq057 PMid:20147302    PMCid:2844994 Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, et al. (2009). Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc. Natl. Acad. Sci. U. S. A. 106: 3976-3981. http://dx.doi.org/10.1073/pnas.0813403106 PMid:19234113    PMCid:2645912
S. C. Soares, Dorella, F. A., Pacheco, L. G. C., Hirata, Jr., R., Mattos-Guaraldi, A. L., Azevedo, V., and Miyoshi, A., Plasticity of Corynebacterium diphtheriae pathogenicity islands revealed by PCR, vol. 10. pp. 1290-1294, 2011.
Ben ZN, Gautier M, Andonov R, Lavenier D, et al. (2004). GenoFrag: software to design primers optimized for whole genome scanning by long-range PCR amplification. Nucleic Acids Res. 32: 17-24. doi:10.1093/nar/gkg928 PMid:14704339    PMCid:373259 Ben ZN, Grimaldi C, Gautier M, Langella P, et al. (2006). Testing of a whole genome PCR scanning approach to identify genomic variability in four different species of lactic acid bacteria. Res. Microbiol. 157: 386-394. doi:10.1016/j.resmic.2005.09.006 PMid:16300933 Brown JS, Gilliland SM, Ruiz-Albert J and Holden DW (2002). Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70: 4389-4398. doi:10.1128/IAI.70.8.4389-4398.2002 PMid:12117949    PMCid:128127 Dobrindt U and Hacker J (2001). Whole genome plasticity in pathogenic bacteria. Curr. Opin. Microbiol. 4: 550-557. doi:10.1016/S1369-5274(00)00250-2 Enkavi G and Tajkhorshid E (2010). Simulation of spontaneous substrate binding revealing the binding pathway and mechanism and initial conformational response of GlpT. Biochemistry 49: 1105-1114. doi:10.1021/bi901412a PMid:20058936    PMCid:2829668 Frunzke J, Engels V, Hasenbein S, Gatgens C, et al. (2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 67: 305-322. doi:10.1111/j.1365-2958.2007.06020.x PMid:18047570    PMCid:2230225 Gal-Mor O and Finlay BB (2006). Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol. 8: 1707-1719. doi:10.1111/j.1462-5822.2006.00794.x PMid:16939533 Hsiao WW, Ung K, Aeschliman D, Bryan J, et al. (2005). Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet. 1: e62. doi:10.1371/journal.pgen.0010062 PMid:16299586    PMCid:1285063 Ishige T, Krause M, Bott M, Wendisch VF, et al. (2003). The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J. Bacteriol. 185: 4519-4529. doi:10.1128/JB.185.15.4519-4529.2003 PMid:12867461    PMCid:165763 Iwaki M, Komiya T, Yamamoto A, Ishiwa A, et al. (2010). Genome organization and pathogenicity of Corynebacterium diphtheriae C7(-) and PW8 strains. Infect. Immun. 78: 3791-3800. doi:10.1128/IAI.00049-10 PMid:20547743    PMCid:2937438 Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, et al. (1998). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. U. S. A. 95: 3134-3139. doi:10.1073/pnas.95.6.3134 Kauser F, Khan AA, Hussain MA, Carroll IM, et al. (2004). The cag pathogenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations. J. Clin. Microbiol. 42: 5302-5308. doi:10.1128/JCM.42.11.5302-5308.2004 PMid:15528729    PMCid:525253 Mattos-Guaraldi AL, Moreira LO, Damasco PV and Hirata JR (2003). Diphtheria remains a threat to health in the developing world - an overview. Mem. Inst. Oswaldo Cruz 98: 987-993. doi:10.1590/S0074-02762003000800001 Nakao H, Pruckler JM, Mazurova IK, Narvskaia OV, et al. (1996). Heterogeneity of diphtheria toxin gene, tox, and its regulatory element, dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and Ukraine. J. Clin. Microbiol. 34: 1711-1716. PMid:8784575    PMCid:229100 Popovic T, Mazurova IK, Efstratiou A, Vuopio-Varkila J, et al. (2000). Molecular epidemiology of diphtheria. J. Infect. Dis. 181 (Suppl 1): S168-S177. doi:10.1086/315556 PMid:10657209 Pratt JT, Ismail AM and Camilli A (2010). PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77: 1595-1605. doi:10.1111/j.1365-2958.2010.07310.x PMid:20659293 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor, Cold Spring Harbor Laboratory, New York. Sharma NC, Banavaliker JN, Ranjan R and Kumar R (2007). Bacteriological & epidemiological characteristics of diphtheria cases in & around Delhi - a retrospective study. Indian J. Med. Res. 126: 545-552. PMid:18219082 Tumapa S, Holden MT, Vesaratchavest M, Wuthiekanun V, et al. (2008). Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genom. 9: 190. doi:10.1186/1471-2164-9-190 PMid:18439288    PMCid:2386483 Yoshida Y, Sugiyama S, Oyamada T, Yokoyama K, et al. (2010). Identification and characterization of novel phosphate regulon genes, ecs0540-ecs0544, in Escherichia coli O157:H7. Mol. Genet. Genom. 284: 197-205. doi:10.1007/s00438-010-0559-y PMid:20640580