Publications

Found 20 results
Filters: Author is Q. Chen  [Clear All Filters]
2016
H. Jie, Li, P. M., Zhao, G. J., Feng, X. L., Zeng, D. J., Zhang, C. L., Lei, M. Y., Yu, M., Chen, Q., Jie, H., Li, P. M., Zhao, G. J., Feng, X. L., Zeng, D. J., Zhang, C. L., Lei, M. Y., Yu, M., and Chen, Q., Amino acid composition of royal jelly harvested at different times after larval transfer, vol. 15, p. -, 2016.
H. Jie, Li, P. M., Zhao, G. J., Feng, X. L., Zeng, D. J., Zhang, C. L., Lei, M. Y., Yu, M., Chen, Q., Jie, H., Li, P. M., Zhao, G. J., Feng, X. L., Zeng, D. J., Zhang, C. L., Lei, M. Y., Yu, M., and Chen, Q., Amino acid composition of royal jelly harvested at different times after larval transfer, vol. 15, p. -, 2016.
Q. Chen, Du, H., Zhang, R., Zhao, J. H., Hu, Q. C., Wang, C., Wang, G. X., Tang, J. L., Wu, R. F., Chen, Q., Du, H., Zhang, R., Zhao, J. H., Hu, Q. C., Wang, C., Wang, G. X., Tang, J. L., and Wu, R. F., Evaluation of novel assays for the detection of human papilloma virus in self-collected samples for cervical cancer screening, vol. 15, p. -, 2016.
Q. Chen, Du, H., Zhang, R., Zhao, J. H., Hu, Q. C., Wang, C., Wang, G. X., Tang, J. L., Wu, R. F., Chen, Q., Du, H., Zhang, R., Zhao, J. H., Hu, Q. C., Wang, C., Wang, G. X., Tang, J. L., and Wu, R. F., Evaluation of novel assays for the detection of human papilloma virus in self-collected samples for cervical cancer screening, vol. 15, p. -, 2016.
H. X. Shen, Li, L., Chen, Q., He, Y. Q., Yu, C. H., Chu, C. Q., Lu, X. J., and Chen, J., LECT2 association with macrophage-mediated killing of Helicobacter pylori by activating NF-κB and nitric oxide production, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Research Project of Chinese Ministry of Education (#213017A), the Program for the Natural Science Foundation of China (#81400606), the Natural Science Foundation of Ningbo City of China (#2013A610166), and the KC Wong Magna Fund in Ningbo University.REFERENCESAbdullah Z, Knolle PA, et al (2014). Scaling of immune responses against intracellular bacterial infection. EMBO J. 33: 2283-2294. http://dx.doi.org/10.15252/embj.201489055 Ahmed AU, Sarvestani ST, Gantier MP, Williams BR, et al (2014). Integrin-linked kinase modulates lipopolysaccharide- and Helicobacter pylori-induced nuclear factor κB-activated tumor necrosis factor-α production via regulation of p65 serine 536 phosphorylation. J. Biol. Chem. 289: 27776-27793. http://dx.doi.org/10.1074/jbc.M114.574541 Ansari SA, Devi S, Tenguria S, Kumar A, et al (2014). Helicobacter pylori protein HP0986 (TieA) interacts with mouse TNFR1 and triggers proinflammatory and proapoptotic signaling pathways in cultured macrophage cells (RAW 264.7). Cytokine 68: 110-117. http://dx.doi.org/10.1016/j.cyto.2014.03.006 Baccarini M, et al (2005). Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett. 579: 3271-3277. http://dx.doi.org/10.1016/j.febslet.2005.03.024 Benson MD, James S, Scott K, Liepnieks JJ, et al (2008). Leukocyte chemotactic factor 2: A novel renal amyloid protein. Kidney Int. 74: 218-222. http://dx.doi.org/10.1038/ki.2008.152 Blom N, Gammeltoft S, Brunak S, et al (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294: 1351-1362. http://dx.doi.org/10.1006/jmbi.1999.3310 Bussière FI, Chaturvedi R, Cheng Y, Gobert AP, et al (2005). Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 280: 2409-2412. http://dx.doi.org/10.1074/jbc.C400498200 Castaño-Rodríguez N, Kaakoush NO, Mitchell HM, et al (2014). Pattern-recognition receptors and gastric cancer. Front. Immunol. 5: 336. Chaturvedi R, Asim M, Lewis ND, Algood HM, et al (2007). L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect. Immun. 75: 4305-4315. http://dx.doi.org/10.1128/IAI.00578-07 Chaturvedi R, de Sablet T, Coburn LA, Gobert AP, et al (2012). Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids 42: 627-640. http://dx.doi.org/10.1007/s00726-011-1038-4 Chen TE, Xu XM, Liu P, Liang SY, et al (2015). Elucidating the function and tolerance mechanism of gamma delta (γ δ) T cells in a Helicobacter pylori infection model. Genet. Mol. Res. 14: 10543-10552. http://dx.doi.org/10.4238/2015.September.8.16 Cid TP, Fernández MC, Benito Martínez S, Jones NL, et al (2013). Pathogenesis of Helicobacter pylori infection. Helicobacter 18 (Suppl 1): 12-17. http://dx.doi.org/10.1111/hel.12076 Dang MH, Kato H, Ueshiba H, Omori-Miyake M, et al (2010). Possible role of LECT2 as an intrinsic regulatory factor in SEA-induced toxicity in d-galactosamine-sensitized mice. Clin. Immunol. 137: 311-321. http://dx.doi.org/10.1016/j.clim.2010.08.002 Dhillon AS, von Kriegsheim A, Grindlay J, Kolch W, et al (2007). Phosphatase and feedback regulation of Raf-1 signaling. Cell Cycle 6: 3-7. http://dx.doi.org/10.4161/cc.6.1.3593 Forbus J, Spratt H, Wiktorowicz J, Wu Z, et al (2006). Functional analysis of the nuclear proteome of human A549 alveolar epithelial cells by HPLC-high resolution 2-D gel electrophoresis. Proteomics 6: 2656-2672. http://dx.doi.org/10.1002/pmic.200500652 Granger DL, Taintor RR, Boockvar KS, HibbsJBJret al. (1996). Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol. 268: 142-151. http://dx.doi.org/10.1016/S0076-6879(96)68016-1 Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, et al (2007). C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26: 605-616. http://dx.doi.org/10.1016/j.immuni.2007.03.012 Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, et al (2009). Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat. Immunol. 10: 203-213. http://dx.doi.org/10.1038/ni.1692 Hardbower DM, Asim M, Murray-Stewart T, CaseroRAJret al (2016). Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids 48: 2375-2388. http://dx.doi.org/10.1007/s00726-016-2231-2 Hayden MS, Ghosh S, et al (2011). NF-κB in immunobiology. Cell Res. 21: 223-244. http://dx.doi.org/10.1038/cr.2011.13 Hong JB, Zuo W, Wang AJ, Lu NH, et al (2016). Helicobacter pylori infection synergistic with IL-1β gene polymorphisms potentially contributes to the carcinogenesis of gastric cancer. Int. J. Med. Sci. 13: 298-303. http://dx.doi.org/10.7150/ijms.14239 Huang J, DeGraves FJ, Lenz SD, Gao D, et al (2002). The quantity of nitric oxide released by macrophages regulates Chlamydia-induced disease. Proc. Natl. Acad. Sci. USA 99: 3914-3919. http://dx.doi.org/10.1073/pnas.062578399 Hu Y, Liu JP, Zhu Y, Lu NH, et al (2016). The importance of Toll-like receptors in NF-κB signaling pathway activation by Helicobacter pylori infection and the regulators of this response. Helicobacter, in press. http://dx.doi.org/10.1111/hel.12292 Hughes CE, Sinha U, Pandey A, Eble JA, et al (2013). Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J. Biol. Chem. 288: 5127-5135. http://dx.doi.org/10.1074/jbc.M112.411462 Jones E, Adcock IM, Ahmed BY, Punchard NA, et al (2007). Modulation of LPS stimulated NF-kappaB mediated Nitric Oxide production by PKCepsilon and JAK2 in RAW macrophages. J. Inflamm. (Lond.) 4: 23. http://dx.doi.org/10.1186/1476-9255-4-23 Kameoka Y, Yamagoe S, Hatano Y, Kasama T, et al (2000). Val58Ile polymorphism of the neutrophil chemoattractant LECT2 and rheumatoid arthritis in the Japanese population. Arthritis Rheum. 43: 1419-1420. http://dx.doi.org/10.1002/1529-0131(200006)43:6<1419::AID-ANR28>3.0.CO;2-I Kim G, Kim TH, Kang MJ, Choi JA, et al (2016). Inhibitory effect of withaferin A on Helicobacter pylori‑induced IL‑8 production and NF‑κB activation in gastric epithelial cells. Mol. Med. Rep. 13: 967-972. Kumar N, Mariappan V, Baddam R, Lankapalli AK, et al (2015). Comparative genomic analysis of Helicobacter pylori from Malaysia identifies three distinct lineages suggestive of differential evolution. Nucleic Acids Res. 43: 324-335. http://dx.doi.org/10.1093/nar/gku1271 Lu DY, Tang CH, Chang CH, Maa MC, et al (2012). Helicobacter pylori attenuates lipopolysaccharide-induced nitric oxide production by murine macrophages. Innate Immun. 18: 406-417. http://dx.doi.org/10.1177/1753425911413164 Lu XJ, Chen J, Yu CH, Shi YH, et al (2013). LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J. Exp. Med. 210: 5-13. http://dx.doi.org/10.1084/jem.20121466 Oeckinghaus A, Hayden MS, Ghosh S, et al (2011). Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12: 695-708. http://dx.doi.org/10.1038/ni.2065 Osorio F, Reis e Sousa C, et al (2011). Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34: 651-664. http://dx.doi.org/10.1016/j.immuni.2011.05.001 Park CG, Takahara K, Umemoto E, Yashima Y, et al (2001). Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int. Immunol. 13: 1283-1290. http://dx.doi.org/10.1093/intimm/13.10.1283 Polk DB, PeekRMJret al. (2010). Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10: 403-414. http://dx.doi.org/10.1038/nrc2857 Saito T, Okumura A, Watanabe H, Asano M, et al (2004). Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. J. Immunol. 173: 579-585. http://dx.doi.org/10.4049/jimmunol.173.1.579 Sancho D, Reis e Sousa C, et al (2012). Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30: 491-529. http://dx.doi.org/10.1146/annurev-immunol-031210-101352 Suzuki-Inoue K, Fuller GL, García A, Eble JA, et al (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107: 542-549. http://dx.doi.org/10.1182/blood-2005-05-1994 Uchida T, Nagai H, Gotoh K, Kanagawa H, et al (1999). Expression pattern of a newly recognized protein, LECT2, in hepatocellular carcinoma and its premalignant lesion. Pathol. Int. 49: 147-151. http://dx.doi.org/10.1046/j.1440-1827.1999.00836.x Yamagoe S, Mizuno S, Suzuki K, et al (1998). Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver. Biochim. Biophys. Acta 1396: 105-113. http://dx.doi.org/10.1016/S0167-4781(97)00181-4 Yamauchi K, Choi IJ, Lu H, Ogiwara H, et al (2008). Regulation of IL-18 in Helicobacter pylori infection. J. Immunol. 180: 1207-1216. http://dx.doi.org/10.4049/jimmunol.180.2.1207    
Q. Chen, Hu, J., Qin, S. S., Liu, C. L., Wu, H., Wang, J. R., Lu, X. M., Wang, J., Chen, G. Q., Liu, Y., Liu, B. Y., Xu, C. S., Liang, S. D., Chen, Q., Hu, J., Qin, S. S., Liu, C. L., Wu, H., Wang, J. R., Lu, X. M., Wang, J., Chen, G. Q., Liu, Y., Liu, B. Y., Xu, C. S., and Liang, S. D., Protective effects of naringin against gp120-induced injury mediated by P2X7 receptors in BV2 microglial cells, vol. 15, p. -, 2016.
Q. Chen, Hu, J., Qin, S. S., Liu, C. L., Wu, H., Wang, J. R., Lu, X. M., Wang, J., Chen, G. Q., Liu, Y., Liu, B. Y., Xu, C. S., Liang, S. D., Chen, Q., Hu, J., Qin, S. S., Liu, C. L., Wu, H., Wang, J. R., Lu, X. M., Wang, J., Chen, G. Q., Liu, Y., Liu, B. Y., Xu, C. S., and Liang, S. D., Protective effects of naringin against gp120-induced injury mediated by P2X7 receptors in BV2 microglial cells, vol. 15, p. -, 2016.
2015
Q. Chen, Peng, X. D., Huang, C. Q., Hu, X. Y., and Zhang, X. M., Association between ARNTL (BMAL1) rs2278749 polymorphism T >C and susceptibility to Alzheimer disease in a Chinese population, vol. 14, pp. 18515-18522, 2015.
Y. X. Guan, Chen, Q., Wan, S. H., Huang, J. S., Yang, X. Q., Pan, L. J., Zhang, Q. I., Zhang, Q., Ou, Y. J., Peng, X. W., Liu, S. Z., Chen, Q. J., and Lou, J., Effect of different time phases of radionuclide hepatobiliary scintigraphy on the differential diagnosis of congenital biliary atresia, vol. 14, pp. 3862-3868, 2015.
H. J. Duan, Hu, R. Y., Wu, B., Chen, D. X., Huang, K. Y., Dai, J., Chen, Q., Wei, Z. C., Cao, S., Sun, Y. H., and Li, Y., Genetic characterization of red-colored heartwood genotypes of Chinese fir using simple sequence repeat (SSR) markers, vol. 14, pp. 18552-18561, 2015.
J. P. Liu, Zhang, Y. H., Yang, B., Chen, Q., and Cao, L., Influence of thoracic duct ligation on the lipid metabolism of patients with esophageal carcinoma after esophagectomy, vol. 14, pp. 2527-2536, 2015.
G. J. Zhao, Wu, N., Li, D. Y., Zeng, D. J., Chen, Q., Lu, L., Feng, X. L., Zhang, C. L., Zheng, C. L., and Jie, H., Molecular cloning and evolutionary analysis of captive forest musk deer bitter taste receptor gene T2R16, vol. 14, pp. 16185-16195, 2015.
Q. Song, Ma, Y. L., Song, J. Q., Chen, Q., Xia, G. S., Ma, J. Y., Feng, F., Fei, X. J., and Wang, Q. M., Sevoflurane induces neurotoxicity in young mice through FAS/FASL signaling, vol. 14, pp. 18059-18068, 2015.
2012
Q. Chen, Yu, H. W., Wang, X. R., Xie, X. L., Yue, X. Y., and Tang, H. R., An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.), vol. 11. pp. 1773-1782, 2012.
Abe S, Fujisawa T, Satake M and Ogata K (1972). Studies on SDS-phenol methods for extraction of rat liver nuclear RNA. I. Purity, recovery, and specific radioactivity of pulse labeled nuclear RNA obtained by SDS-phenol extraction under various conditions. J. Biochem. 72: 561-570. PMid:4673761   Almarza J, Morales S, Rincon L and Brito F (2006). Urea as the only inactivator of RNase for extraction of total RNA from plant and animal tissues. Anal. Biochem. 358: 143-145. http://dx.doi.org/10.1016/j.ab.2006.03.040 PMid:16979578   Bugos RC, Chiang VL, Zhang XH, Campbell ER, et al. (1995). RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques 19: 734-737. PMid:8588907   Chang S, Puryear J and Cairney J (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116. http://dx.doi.org/10.1007/BF02670468   Chomczynski P (2004). Reagents and Methods for Isolation of Purified RNA. US Patent 0233333.   Chomczynski P and Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. http://dx.doi.org/10.1016/0003-2697(87)90021-2   Chomczynski P and Sacchi N (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1: 581-585. http://dx.doi.org/10.1038/nprot.2006.83 PMid:17406285   Cuevas-Rodriguez EO, Yousef GG, Garcia-Saucedo PA, Lopez-Medina J, et al. (2010). Characterization of anthocyanins and proanthocyanidins in wild and domesticated Mexican blackberries (Rubus spp.). J. Agric. Food Chem. 58: 7458-7464. http://dx.doi.org/10.1021/jf101485r PMid:20507066   Fan-Chiang HJ and Wrolstad RE (2005). Anthocyanin pigment composition of blackberries. J. Food Sci. 70: C198-C202. http://dx.doi.org/10.1111/j.1365-2621.2005.tb07125.x   Fang G, Hammar S and Grumet R (1992). A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52-4, 56. PMid:1503775   Fort F, Hayoun L, Valls J, Canals JM, et al. (2008). A new and simple method for rapid extraction and isolation of high-quality RNA from grape (Vitis vinifera) berries. J. Sci. Food Agr. 88: 179-184. http://dx.doi.org/10.1002/jsfa.3066   Ghangal R, Raghuvanshi S and Chand SP (2009). Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol. Biochem. 47: 1113-1115. http://dx.doi.org/10.1016/j.plaphy.2009.09.004 PMid:19804984   Ghawana S, Paul A, Kumar H, Kumar A, et al. (2011). An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes 4: 85. http://dx.doi.org/10.1186/1756-0500-4-85 PMid:21443767 PMCid:3079660   Heath EM and Minnetonka M (1999). Low pH RNA Isolation Reagents, Method, and Kit. US Patent 5973137.   Jones CS, Iannetta PP, Woodhead M, Davies HV, et al. (1997). The isolation of RNA from raspberry (Rubus idaeus) fruit. Mol. Biotechnol. 8: 219-221. http://dx.doi.org/10.1007/BF02760775 PMid:9438256   Kansal R, Kuhar K, Verma I, Gupta RN, et al. (2008). Improved and convenient method of RNA isolation from polyphenols and polysaccharide rich plant tissues. Indian J. Exp. Biol. 46: 842-845. PMid:19245182   Liao Z, Chen M, Guo L, Gong Y, et al. (2004). Rapid isolation of high-quality total RNA from taxus and ginkgo. Prep. Biochem. Biotechnol. 34: 209-214. http://dx.doi.org/10.1081/PB-200026790 PMid:15461137   Liu JJ, Goh CJ, Loh CS, Liu P, et al. (1998). A method for isolation of total RNA from fruit tissues of banana. Plant Mol. Biol. Rep. 16: 87. http://dx.doi.org/10.1023/A:1007492421119   Perkins-Veazie P, Clark JR, Huber DJ and Baldwin EA (2000). Ripening physiology in "Navaho" thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J. Am. Soc. Hortic. Sci. 125: 357-363.   Rio DC, Ares M Jr, Hannon GJ and Nilsen TW (2010). Purification of RNA by SDS solubilization and phenol extraction. Cold Spring Harb. Protoc. 2010: db.   Robert EF Jr (2010). RNA Isolation Strategies, RNA Methodologies. 4th edn. Academic Press, San Diego.   Robertson N and Leek R (2006). Isolation of RNA from tumor samples: single-step guanidinium acid-phenol method. Methods Mol. Med. 120: 55-59. PMid:16491593   Rodrigues SM, Soares VL, de Oliveira TM, Gesteira AS, et al. (2007). Isolation and purification of RNA from tissues rich in polyphenols, polysaccharides, and pigments of annatto (Bixa orellana L.). Mol. Biotechnol. 37: 220-224. http://dx.doi.org/10.1007/s12033-007-0070-9 PMid:17952668   Smart M and Roden LC (2010). A small-scale RNA isolation protocol useful for high-throughput extractions from recalcitrant plants. S. Afr. J. Bot. 76: 375-379. http://dx.doi.org/10.1016/j.sajb.2010.01.002   Stafne ET (2003). A short retrospective of blackberries in Arkansas, AAES Res. Series 520. Hort. Stud.   Wang G, Wang G, Zhang X, Wang F, et al. (2012). Isolation of high quality RNA from cereal seeds containing high levels of starch. Phytochem. Anal. 23: 159-163. http://dx.doi.org/10.1002/pca.1337 PMid:21739496   Wang L and Stegemann JP (2010). Extraction of high quality RNA from polysaccharide matrices using cetyltrimethylam-monium bromide. Biomaterials 31: 1612-1618. http://dx.doi.org/10.1016/j.biomaterials.2009.11.024 PMid:19962190 PMCid:2813910   Wang X, Xiao H, Chen G, Zhao X, et al. (2011). Isolation of high-quality RNA from Reaumuria soongorica, a desert plant rich in secondary metabolites. Mol. Biotechnol. 48: 165-172. http://dx.doi.org/10.1007/s12033-010-9357-3 PMid:21136208   Wang XR, Tang HR, Fu HQ, Zhong BF, et al. (2008). Karyotypes of 15 introduced bramble cultivars (Rubus) (In Chinese). Sci. Silvae Sci. 44: 147-150.   Wu JY, Peng G, Li CQ, Lu LJ, et al. (2011). A new rapid and effective method for RNA isolation from litchi tissues of fruitlet and abscission zone (In Chinese). Acta Hort. Sin. 38: 1191-1196.
Q. Chen, Li, W. J., Wan, Y. Y., Yu, C. D., and Li, W. G., Fibroblast growth factor receptor 4 Gly388Arg polymorphism associated with severity of gallstone disease in a Chinese population, vol. 11, pp. 548-555, 2012.
Bange J, Prechtl D, Cheburkin Y, Specht K, et al. (2002). Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res. 62: 840-847. PMid:11830541 Buch S, Schafmayer C, Volzke H, Becker C, et al. (2007). A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet. 39: 995-999. http://dx.doi.org/10.1038/ng2101 PMid:17632509 Buch S, Schafmayer C, Volzke H, Seeger M, et al. (2010). Loci from a genome-wide analysis of bilirubin levels are associated with gallstone risk and composition. Gastroenterology 139: 1942-1951. http://dx.doi.org/10.1053/j.gastro.2010.09.003 PMid:20837016 Chan T, Yaghoubian A, Rosing D, Lee E, et al. (2008). Total bilirubin is a useful predictor of persisting common bile duct stone in gallstone pancreatitis. Am. Surg. 74: 977-980. PMid:18942626 Choi M, Moschetta A, Bookout AL, Peng L, et al. (2006). Identification of a hormonal basis for gallbladder filling. Nat. Med. 12: 1253-1255. http://dx.doi.org/10.1038/nm1501 PMid:17072310 Donovan JM (1999). Physical and metabolic factors in gallstone pathogenesis. Gastroenterol. Clin. North Am. 28: 75-97. http://dx.doi.org/10.1016/S0889-8553(05)70044-3 Falvella FS, Frullanti E, Galvan A, Spinola M, et al. (2009). FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung. Int. J. Cancer 124: 2880- 2885. http://dx.doi.org/10.1002/ijc.24302 PMid:19296538 Hylemon PB, Zhou H, Pandak WM, Ren S, et al. (2009). Bile acids as regulatory molecules. J. Lipid Res. 50: 1509-1520. http://dx.doi.org/10.1194/jlr.R900007-JLR200 PMid:19346331    PMCid:2724047 Jiang ZY, Han TQ, Suo GJ, Feng DX, et al. (2004). Polymorphisms at cholesterol 7alpha-hydroxylase, apolipoproteins B and E and low density lipoprotein receptor genes in patients with gallbladder stone disease. World J. Gastroenterol. 10: 1508-1512. PMid:15133863 Johnston DE and Kaplan MM (1993). Pathogenesis and treatment of gallstones. N. Engl. J. Med. 328: 412-421. http://dx.doi.org/10.1056/NEJM199302113280608 PMid:8421460 Jones S (2008). Mini-review: endocrine actions of fibroblast growth factor 19. Mol. Pharm. 5: 42-48. http://dx.doi.org/10.1021/mp700105z PMid:18179175 Lammert F and Sauerbruch T (2005). Mechanisms of disease: the genetic epidemiology of gallbladder stones. Nat. Clin. Pract. Gastroenterol. Hepatol. 2: 423-433. http://dx.doi.org/10.1038/ncpgasthep0257 Miyasaka K, Takata Y and Funakoshi A (2002). Association of cholecystokinin A receptor gene polymorphism with cholelithiasis and the molecular mechanisms of this polymorphism. J. Gastroenterol. 37 (Suppl 14): 102-106. PMid:12572876 Russell DW and Setchell KD (1992). Bile acid biosynthesis. Biochemistry 31: 4737-4749. http://dx.doi.org/10.1021/bi00135a001 PMid:1591235 Srivastava A, Pandey SN, Choudhuri G and Mittal B (2008). Role of genetic variant A-204C of cholesterol 7alpha-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer. Mol. Genet. Metab. 94: 83-89. http://dx.doi.org/10.1016/j.ymgme.2007.11.014 PMid:18178499 Strasberg SM (1997). Cholelithiasis and acute cholecystitis. Baillieres Clin. Gastroenterol. 11: 643-661. http://dx.doi.org/10.1016/S0950-3528(97)90014-2 Strasberg SM and Clavien PA (1992). Cholecystolithiasis: lithotherapy for the 1990s. Hepatology 16: 820-839. http://dx.doi.org/10.1002/hep.1840160332 PMid:1387104 Wang J, Stockton DW and Ittmann M (2004). The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin. Cancer Res. 10: 6169-6178. http://dx.doi.org/10.1158/1078-0432.CCR-04-0408 PMid:15448004 Wang J, Yu W, Cai Y, Ren C, et al. (2008). Altered fibroblast growth factor receptor 4 stability promotes prostate cancer progression. Neoplasia 10: 847-856. PMid:18670643    PMCid:2481572 Ye Y, Shi Y, Zhou Y, Du C, et al. (2010). The fibroblast growth factor receptor-4 Arg388 allele is associated with gastric cancer progression. Ann. Surg. Oncol. 17: 3354-3361. http://dx.doi.org/10.1245/s10434-010-1323-6 PMid:20844967 Yu C, Wang F, Kan M, Jin C, et al. (2000). Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem. 275: 15482-15489. http://dx.doi.org/10.1074/jbc.275.20.15482 PMid:10809780 Yu C, Wang F, Jin C, Huang X, et al. (2005). Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J. Biol. Chem. 280: 17707-17714. http://dx.doi.org/10.1074/jbc.M411771200 PMid:15750181
S. X. Chen, Du, J. N., Hao, L. N., Wang, C. Y., Chen, Q., and Chang, Y. X., Identification of markers tightly linked to tomato yellow leaf curl disease and root-knot nematode resistance by multiplex PCR, vol. 11, pp. 2917-2928, 2012.
Castro AP, Díez MJ and Nuez F (2007). Inheritance of tomato yellow leaf curl virus resistance derived from Solanum pimpinellifolium UPV16991. Plant Dis. 91: 879-885. http://dx.doi.org/10.1094/PDIS-91-7-0879   Chen S, Fang Y and Yao LF (2006). Quick Preparation for Identification of DNA by PCR. Plant Physiol. Commun. 42: 36-39.   Fauquet CM and Stanley J (2003). Geminivirus classification and nomenclature: progress and problems. Ann. Appl. Biol. 142: 165-189. http://dx.doi.org/10.1111/j.1744-7348.2003.tb00241.x   Fauquet CM, Bisaro DM, Briddon RW, Brown LK, et al. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch. Virol. 148: 405-421. http://dx.doi.org/10.1007/s00705-002-0957-5 PMid:12557003   Gilbert JC (1958). Some linkage studies with the Mi gene for resistance to root-knot. Rep. Tomato Genet. Coop. 8: 15-17.   Hanson PM, Bernacchi D, Green S, Tanksley SD, et al. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Soc. Hortic. Sci. 125: 15-20.   Hassan AA, Wafi MS, Quronfilah NE, Obaji UA, et al. (1991). Screening for tomato yellow leaf curl virus resistance in wild and domestic Lycopersicon accessions. Rep. Tomato Genet. Coop. 41:19-21.   Ji Y and Scott JW (2006). Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6 of tomato. Rep. Tomato Genet. Coop. 56: 22-25.   Ji Y, Schuster DJ and Scott JW (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. 20: 271-284. http://dx.doi.org/10.1007/s11032-007-9089-7   Kaya HB and Tanyolaç B (2009). Screening of F3 segregation population lines revealed by Ty-1 markers linked to resistance locus of tomato yellow leaf curl disease (TYLCD) in Tomato (Lycopersicum esculentum). Int. J. Nat. Eng. Sci. 33: 149-153.   Lapidot M and Friedmann M (2000). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140: 109-127. http://dx.doi.org/10.1111/j.1744-7348.2002.tb00163.x   Laterrot H (1992). Resistance genitors to Tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl. Newsl. 1: 2-4.   Laterrot H (1995). Breeding network to create tomato varieties resistant to Tomato yellow leaf curl virus (TYLCV). Fruits 50: 439-444.   Michelson I, Zamir D and Czosnek H (1994). Accumulation and translocation of Tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84: 928-933. http://dx.doi.org/10.1094/Phyto-84-928   Milo J (2001). The PCR-Based Marker REX-1, Linked to the Gene Mi, can be Used as a Marker to TYLCV Tolerance. Proceedings of Tomato Breeders Round Table, Antigua.   Picó B, Díez MJ and Nuez F (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus - a review. Sci. Hortic. 67: 151-196. http://dx.doi.org/10.1016/S0304-4238(96)00945-4   Pilowsky M and Cohen S (2000). Screening additional wild tomatoes for resistance to the whitefly-borne tomato yellow leaf curl virus. Acta Physiol. Plant 22: 351-353. http://dx.doi.org/10.1007/s11738-000-0052-z   Yu L, Zhu L and Wan Y (2008). Identification of Ty-1 gene and Mi gene by multiplex PCR reaction in tomato. Mol. Plant Breed. 6: 165-169.   Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, et al. (1994). Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. http://dx.doi.org/10.1007/BF00225889