Publications
Found 3 results
Filters: Author is S.F. Niu [Clear All Filters]
“Development of polymorphic microsatellites for Sillago sihama based on next-generation sequencing and transferability to Sillago japonica”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research financially supported by the Special Fund for Agro-Scientific Research in the Public Interest of China (#201403008), the Fund of Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, China (#FREU2015-05), the Project for Outstanding Young Teachers in Higher Education of Guangdong, China (#Yq2013093), and the National Natural Science Foundation of China (#31372532).
REFERENCES
Abdelkrim J, Robertson B, Stanton JA, Gemmell N, et al (2009). Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46: 185-192. http://dx.doi.org/10.2144/000113084
Addamo AM, García-Jiménez R, Taviani M, Machordom A, et al (2015). Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus by 454 sequencing and cross-species amplifications in scleractinia order. J. Hered. 106: 322-330. http://dx.doi.org/10.1093/jhered/esv010
Allentoft M, Schuster SC, Holdaway R, Hale M, et al (2009). Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. Biotechniques 46: 195-200. http://dx.doi.org/10.2144/000113086
Benson G, et al (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27: 573-580. http://dx.doi.org/10.1093/nar/27.2.573
Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF, et al (2001). M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31: 24-26, 28.
Dakin EE, Avise JC, et al (2004). Microsatellite null alleles in parentage analysis. Heredity (Edinb) 93: 504-509. http://dx.doi.org/10.1038/sj.hdy.6800545
DeWoody JA, Avise JC, et al (2000). Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biol. 56: 461-473. http://dx.doi.org/10.1111/j.1095-8649.2000.tb00748.x
Duan CX, Li DD, Sun SL, Wang XM, et al (2014). Rapid development of microsatellite markers for Callosobruchus chinensis using Illumina paired-end sequencing. PLoS One 9: e95458. http://dx.doi.org/10.1371/journal.pone.0095458
Gao TX, Ji DP, Xiao YS, Xue TQ, et al (2011). Description and DNA barcoding of a new Sillago species, Sillago sinica (Perciformes: Sillaginidae), from coastal waters of china. Zool. Stud. 50: 254-263.
Goudet J (2001). FSTAT: a program to estimate and test gene diversities and fixation indices (Version 2.9.3). Available at [http://www.unil.ch/izea/softwares/fstat.html].
Grover A, Sharma PC, et al (2016). Development and use of molecular markers: past and present. Crit. Rev. Biotechnol. 36: 290-302. http://dx.doi.org/10.3109/07388551.2014.959891
Guo YS, Wang ZD, Yan CZ, Zhang YL, et al (2012). Isolation and characterization of microsatellite DNA loci from Sillago sihama. J. Genet. 91: e32-e36.
Huang Y, Du T, Huang HL, et al (2013). A study on artificial breeding of Sillago sihama Forskál. J. Guangdong Ocean Univ. 33: 15-21.
Kalinowski ST, Taper ML, Marshall TC, et al (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x
Li R, Zhu H, Ruan J, Qian W, et al (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20: 265-272. http://dx.doi.org/10.1101/gr.097261.109
Lin L, Zhu L, Liu SF, Tang QS, et al (2012). Polymorphic microsatellite loci for Japanese Spanish mackerel (Scomberomorus niphonius). Genet. Mol. Res. 11: 1205-1208. http://dx.doi.org/10.4238/2012.May.8.2
Liu D, Guo Y, Wang Z, Liu C, et al (2012). Phylogenetics inferred from mitogenome and control region of Silver Sillago, Sillago sihama. Mitochondrial DNA 23: 255-263. http://dx.doi.org/10.3109/19401736.2012.674118
Liu JD, Zhu LX, Lu HS, Zhu JX, et al. (2010). Estimation of growth and mortality parameters of the silver sillago (Sillago sihama) in Beibu Gulf. J. Zhejiang Ocean Univ. (Nat. Sci.). 29: 64-69. (In Chinese with English abstract)
Lu ZB, Chen X, Du JG, et al (2008). The population dynamics and parameter of growth and mortality of Sillago sihama in the Minnan-Taiwan fishing grounds. Mar. Fish. Res. 29: 47-53.
Ma H, Cui H, Ma C, Ma L, et al (2012). High genetic diversity and low differentiation in mud crab (Scylla paramamosain) along the southeastern coast of China revealed by microsatellite markers. J. Exp. Biol. 215: 3120-3125. http://dx.doi.org/10.1242/jeb.071654
Niu S, Wu R, Liu Y, Wang X, et al (2016). The High-throughput sequencing of Sillago japonica mitochondrial genome reveals the phylogenetic position within the genus Sillago. Mitochondrial DNA A DNA Mapp Seq Anal 27: 3815-3816.
Page RB, Sankamethawee W, Pierce AJ, Sterling KA, et al (2014). High throughput sequencing enables discovery of microsatellites from the puff-throated bulbul (Alophoixus pallidus) and assessment of genetic diversity in Khao Yai National Park, Thailand. Biochem. Syst. Ecol. 55: 176-183. http://dx.doi.org/10.1016/j.bse.2014.03.032
Restrepo A, Páez VP, Vásquez A, Daza JM, et al (2015). Rapid microsatellite marker development in the endangered neotropical freshwater turtle Podocnemis lewyana, (Testudines: Podocnemididae) using 454 sequencing. Biochem. Syst. Ecol. 59: 220-225. http://dx.doi.org/10.1016/j.bse.2015.01.017
Rice WR, et al (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177
Rousset F, et al (2008). genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
Sambrook J and Russell DW (1989). Molecular cloning: A laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Schuelke M, et al (2000). An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233-234. http://dx.doi.org/10.1038/72708
Schuster SC, et al (2008). Next-generation sequencing transforms today’s biology. Nat. Methods 5: 16-18. http://dx.doi.org/10.1038/nmeth1156
Shao KT (2016). Taiwan Fish Database. Available at [http://fishdb.sinica.edu.tw].
Ueno K, Watanabe M, Ahmad-Syazni K, Koike M, et al (2013). Eleven novel microsatellite loci for Japanese whiting (Sillago japonica) and cross amplification in the endangered small-scale sillago (Sillago parvisquamis). Conserv. Genet. Resour. 5: 659-662. http://dx.doi.org/10.1007/s12686-013-9876-x
Umino T, Ueno K, Mihara T, Koike M, et al (2013). Isolation of eleven polymorphic microsatellite loci for the endangered sillago parvisquamis and cross-species amplification with Sillago japonica. Conserv. Genet. Resour. 5: 771-773. http://dx.doi.org/10.1007/s12686-013-9904-x
Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P, et al (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Villanova GV, Vera M, Díaz J, Martinez P, et al (2015). Isolation and characterization of 20 polymorphic microsatellite loci in the migratory freshwater fish Leporinus obtusidens (Characiformes: Anostomidae) using 454 shotgun pyrosequencing. J. Fish Biol. 86: 1209-1217. http://dx.doi.org/10.1111/jfb.12632
Wang L, Song N, Gao T, et al (2014). Isolation and characterization of 24 polymorphic microsatellite loci in Japanese sillago (Sillago japonica). Conserv. Genet. Resour. 6: 581-584. http://dx.doi.org/10.1007/s12686-014-0145-4
Yang T, Fang L, Zhang X, Hu J, et al (2015). High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One 10: e0139775. http://dx.doi.org/10.1371/journal.pone.0139775
Yu HT, Lee YJ, Huang SW, Chiu TS, et al (2002). Genetic analysis of the populations of Japanese anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA. Mar. Biotechnol. (NY) 4: 471-479. http://dx.doi.org/10.1007/s10126-002-0035-8
Zhang HR, Niu SF, Wu RX, Zhai Y, et al (2016). Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 66: 326-330. http://dx.doi.org/10.1016/j.bse.2016.05.008
“Development of polymorphic microsatellites for Sillago sihama based on next-generation sequencing and transferability to Sillago japonica”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research financially supported by the Special Fund for Agro-Scientific Research in the Public Interest of China (#201403008), the Fund of Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, China (#FREU2015-05), the Project for Outstanding Young Teachers in Higher Education of Guangdong, China (#Yq2013093), and the National Natural Science Foundation of China (#31372532).
REFERENCES
Abdelkrim J, Robertson B, Stanton JA, Gemmell N, et al (2009). Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46: 185-192. http://dx.doi.org/10.2144/000113084
Addamo AM, García-Jiménez R, Taviani M, Machordom A, et al (2015). Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus by 454 sequencing and cross-species amplifications in scleractinia order. J. Hered. 106: 322-330. http://dx.doi.org/10.1093/jhered/esv010
Allentoft M, Schuster SC, Holdaway R, Hale M, et al (2009). Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. Biotechniques 46: 195-200. http://dx.doi.org/10.2144/000113086
Benson G, et al (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27: 573-580. http://dx.doi.org/10.1093/nar/27.2.573
Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF, et al (2001). M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31: 24-26, 28.
Dakin EE, Avise JC, et al (2004). Microsatellite null alleles in parentage analysis. Heredity (Edinb) 93: 504-509. http://dx.doi.org/10.1038/sj.hdy.6800545
DeWoody JA, Avise JC, et al (2000). Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biol. 56: 461-473. http://dx.doi.org/10.1111/j.1095-8649.2000.tb00748.x
Duan CX, Li DD, Sun SL, Wang XM, et al (2014). Rapid development of microsatellite markers for Callosobruchus chinensis using Illumina paired-end sequencing. PLoS One 9: e95458. http://dx.doi.org/10.1371/journal.pone.0095458
Gao TX, Ji DP, Xiao YS, Xue TQ, et al (2011). Description and DNA barcoding of a new Sillago species, Sillago sinica (Perciformes: Sillaginidae), from coastal waters of china. Zool. Stud. 50: 254-263.
Goudet J (2001). FSTAT: a program to estimate and test gene diversities and fixation indices (Version 2.9.3). Available at [http://www.unil.ch/izea/softwares/fstat.html].
Grover A, Sharma PC, et al (2016). Development and use of molecular markers: past and present. Crit. Rev. Biotechnol. 36: 290-302. http://dx.doi.org/10.3109/07388551.2014.959891
Guo YS, Wang ZD, Yan CZ, Zhang YL, et al (2012). Isolation and characterization of microsatellite DNA loci from Sillago sihama. J. Genet. 91: e32-e36.
Huang Y, Du T, Huang HL, et al (2013). A study on artificial breeding of Sillago sihama Forskál. J. Guangdong Ocean Univ. 33: 15-21.
Kalinowski ST, Taper ML, Marshall TC, et al (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x
Li R, Zhu H, Ruan J, Qian W, et al (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20: 265-272. http://dx.doi.org/10.1101/gr.097261.109
Lin L, Zhu L, Liu SF, Tang QS, et al (2012). Polymorphic microsatellite loci for Japanese Spanish mackerel (Scomberomorus niphonius). Genet. Mol. Res. 11: 1205-1208. http://dx.doi.org/10.4238/2012.May.8.2
Liu D, Guo Y, Wang Z, Liu C, et al (2012). Phylogenetics inferred from mitogenome and control region of Silver Sillago, Sillago sihama. Mitochondrial DNA 23: 255-263. http://dx.doi.org/10.3109/19401736.2012.674118
Liu JD, Zhu LX, Lu HS, Zhu JX, et al. (2010). Estimation of growth and mortality parameters of the silver sillago (Sillago sihama) in Beibu Gulf. J. Zhejiang Ocean Univ. (Nat. Sci.). 29: 64-69. (In Chinese with English abstract)
Lu ZB, Chen X, Du JG, et al (2008). The population dynamics and parameter of growth and mortality of Sillago sihama in the Minnan-Taiwan fishing grounds. Mar. Fish. Res. 29: 47-53.
Ma H, Cui H, Ma C, Ma L, et al (2012). High genetic diversity and low differentiation in mud crab (Scylla paramamosain) along the southeastern coast of China revealed by microsatellite markers. J. Exp. Biol. 215: 3120-3125. http://dx.doi.org/10.1242/jeb.071654
Niu S, Wu R, Liu Y, Wang X, et al (2016). The High-throughput sequencing of Sillago japonica mitochondrial genome reveals the phylogenetic position within the genus Sillago. Mitochondrial DNA A DNA Mapp Seq Anal 27: 3815-3816.
Page RB, Sankamethawee W, Pierce AJ, Sterling KA, et al (2014). High throughput sequencing enables discovery of microsatellites from the puff-throated bulbul (Alophoixus pallidus) and assessment of genetic diversity in Khao Yai National Park, Thailand. Biochem. Syst. Ecol. 55: 176-183. http://dx.doi.org/10.1016/j.bse.2014.03.032
Restrepo A, Páez VP, Vásquez A, Daza JM, et al (2015). Rapid microsatellite marker development in the endangered neotropical freshwater turtle Podocnemis lewyana, (Testudines: Podocnemididae) using 454 sequencing. Biochem. Syst. Ecol. 59: 220-225. http://dx.doi.org/10.1016/j.bse.2015.01.017
Rice WR, et al (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177
Rousset F, et al (2008). genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
Sambrook J and Russell DW (1989). Molecular cloning: A laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Schuelke M, et al (2000). An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233-234. http://dx.doi.org/10.1038/72708
Schuster SC, et al (2008). Next-generation sequencing transforms today’s biology. Nat. Methods 5: 16-18. http://dx.doi.org/10.1038/nmeth1156
Shao KT (2016). Taiwan Fish Database. Available at [http://fishdb.sinica.edu.tw].
Ueno K, Watanabe M, Ahmad-Syazni K, Koike M, et al (2013). Eleven novel microsatellite loci for Japanese whiting (Sillago japonica) and cross amplification in the endangered small-scale sillago (Sillago parvisquamis). Conserv. Genet. Resour. 5: 659-662. http://dx.doi.org/10.1007/s12686-013-9876-x
Umino T, Ueno K, Mihara T, Koike M, et al (2013). Isolation of eleven polymorphic microsatellite loci for the endangered sillago parvisquamis and cross-species amplification with Sillago japonica. Conserv. Genet. Resour. 5: 771-773. http://dx.doi.org/10.1007/s12686-013-9904-x
Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P, et al (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Villanova GV, Vera M, Díaz J, Martinez P, et al (2015). Isolation and characterization of 20 polymorphic microsatellite loci in the migratory freshwater fish Leporinus obtusidens (Characiformes: Anostomidae) using 454 shotgun pyrosequencing. J. Fish Biol. 86: 1209-1217. http://dx.doi.org/10.1111/jfb.12632
Wang L, Song N, Gao T, et al (2014). Isolation and characterization of 24 polymorphic microsatellite loci in Japanese sillago (Sillago japonica). Conserv. Genet. Resour. 6: 581-584. http://dx.doi.org/10.1007/s12686-014-0145-4
Yang T, Fang L, Zhang X, Hu J, et al (2015). High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One 10: e0139775. http://dx.doi.org/10.1371/journal.pone.0139775
Yu HT, Lee YJ, Huang SW, Chiu TS, et al (2002). Genetic analysis of the populations of Japanese anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA. Mar. Biotechnol. (NY) 4: 471-479. http://dx.doi.org/10.1007/s10126-002-0035-8
Zhang HR, Niu SF, Wu RX, Zhai Y, et al (2016). Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 66: 326-330. http://dx.doi.org/10.1016/j.bse.2016.05.008
“Isolation and identification of the immune-relevant ribosomal protein L10 (RPL10/QM-like gene) from the large yellow croaker Pseudosciaena crocea (Pisces: Sciaenidae)”, vol. 11, pp. 3755-3765, 2012.
,
Chavez-Rios R and Vargas-Mejia M (2000). Isolation and identification of L10 gene from Entamoeba histolytica homologous to Wilms' tumor suppressor. Arch. Med. Res. 31: S305-S306.
http://dx.doi.org/10.1016/S0188-4409(00)00118-1
Chen X, Wu CW, Zhong SP, Zeng FR, et al. (2011). Molecular characterization and structure analysis of RPL10/QM-like protein from the red drum Sciaenops ocellatus (Sciaenidae). Genet. Mol. Res. 10: 576-587.
http://dx.doi.org/10.4238/vol10-2gmr1134
PMid:21491368
Chou MY, Hsiao CD, Chen SC, Chen IW, et al. (2008). Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J. Exp. Biol. 211: 3077-3084.
http://dx.doi.org/10.1242/jeb.019950
PMid:18805806
dos Santos NM, Taverne-Thiele JJ, Barnes AC, van Muiswinkel WB, et al. (2001). The gill is a major organ for antibody secreting cell production following direct immersion of sea bass (Dicentrarchus labrax, L.) in a Photobacterium damselae ssp. piscicida bacterin: an ontogenetic study. Fish Shellfish Immunol. 11: 65-74.
http://dx.doi.org/10.1006/fsim.2000.0295
PMid:11271603
Dowdy SF, Lai KM, Weissman BE, Matsui Y, et al. (1991). The isolation and characterization of a novel cDNA demonstrating an altered mRNA level in nontumorigenic Wilms' microcell hybrid cells. Nucleic Acids Res. 19: 5763-5769.
http://dx.doi.org/10.1093/nar/19.20.5763
PMid:1658743 PMCid:328988
Eisinger DP, Dick FA and Trumpower BL (1997). Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol. Cell Biol. 17: 5136-5145.
PMid:9271391 PMCid:232364
Green H, Canfield AE, Hillarby MC, Grant ME, et al. (2000). The ribosomal protein QM is expressed differentially during vertebrate endochondral bone development. J. Bone Miner. Res. 15: 1066-1075.
http://dx.doi.org/10.1359/jbmr.2000.15.6.1066
PMid:10841175
Haugarvoll E, Bjerkas I, Nowak BF, Hordvik I, et al. (2008). Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J. Anat. 213: 202-209.
http://dx.doi.org/10.1111/j.1469-7580.2008.00943.x
PMid:19172734 PMCid:2526113
Hwang JS, Goo TW, Yun EY, Lee JH, et al. (2000). Tissue-/stage-dependent expression of a cloned Bombyx mandarina QM homologue. Biomol. Eng. 16: 211-215.
http://dx.doi.org/10.1016/S1389-0344(00)00056-3
Jin S, Cai WQ and Wang GL (2002). Studies on the pathogenic bacteria diseases of cultured Pseudosciaena crocea. J. Zhejiang Ocean Univ. 21: 225-230.
Kaneko K, Kobayashi H, Onodera O, Miyatake T, et al. (1992). Genomic organization of a cDNA (QM) demonstrating an altered mRNA level in nontumorigenic Wilms' microcell hybrid cells and its localization to Xq28. Hum. Mol. Genet. 1: 529-533.
http://dx.doi.org/10.1093/hmg/1.7.529
PMid:1339145
Koppang EO, Hordvik I, Bjerkas I, Torvund J, et al. (2003). Production of rabbit antisera against recombinant MHC class II β chain and identification of immunoreactive cells in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 14: 115-132.
http://dx.doi.org/10.1006/fsim.2002.0424
PMid:12526876
Li N, Yang Z, Bai J, Fu X, et al. (2010). A shared antigen among Vibrio species: outer membrane protein-OmpK as a versatile Vibriosis vaccine candidate in Orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 28: 952-956.
http://dx.doi.org/10.1016/j.fsi.2010.02.010
PMid:20170736
Liu M and Sadovy de Mitcheson Y (2008). Profile of a fishery collapse: why mariculture failed to save the large yellow croaker. Fish Fish. 9: 219-242.
http://dx.doi.org/10.1111/j.1467-2979.2008.00278.x
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
Mao Y, Xu B, Su YQ, Zhang ZW, et al. (2010). Cloning and mRNA expression of macrophage migration inhibitory factor (MIF) gene of large yellow croaker (Pseudosciaena crocea). Acta Oceanol. Sin. 29: 63-73.
http://dx.doi.org/10.1007/s13131-010-0037-8
Oh C, De Zoysa M, Nikapitiya C, Whang I, et al. (2010). Tumor suppressor QM-like gene from disk abalone (Haliotis discus discus): molecular characterization and transcriptional analysis upon immune challenge. Fish Shellfish Immunol. 29: 494-500.
http://dx.doi.org/10.1016/j.fsi.2010.05.007
PMid:20580829
Ohta Y, Landis E, Boulay T, Phillips RB, et al. (2004). Homologs of CD83 from elasmobranch and teleost fish. J. Immunol. 173: 4553-4560.
PMid:15383588
Rocha CS, Santos AA, Machado JP and Fontes EP (2008). The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 380: 165-169.
http://dx.doi.org/10.1016/j.virol.2008.08.005
PMid:18789471
Sambrook J and David WR (2001). Molecular Cloning 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Scotto-Lavino E, Du G and Frohman MA (2006). 5' end cDNA amplification using classic RACE. Nat. Protoc. 1: 2555-2562.
http://dx.doi.org/10.1038/nprot.2006.480
PMid:17406509
Tanguy A, Guo X and Ford SE (2004). Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338: 121-131.
http://dx.doi.org/10.1016/j.gene.2004.05.019
PMid:15302413
Tobback E, Hermans K, Decostere A, Van den Broeck W, et al. (2010). Interactions of virulent and avirulent Yersinia ruckeri strains with isolated gill arches and intestinal explants of rainbow trout Oncorhynchus mykiss. Dis. Aquat. Organ. 90: 175-179.
http://dx.doi.org/10.3354/dao02230
PMid:20815325
Wang J, Su YQ, Zhang ZX, Li M, et al. (2001). Bacterial pathogenetic biology of cultured Pseudosciaena crocea in southern Fujian. J. Xiamen Univ. 40: 85-91.
Wen Y, Shao JZ, Pan XX and Xiang LX (2005). Molecular cloning, characterization and expression analysis of QM gene from grass carp (Ctenopharyngodon idellus) homologous to Wilms' tumor suppressor. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141: 356-365.
http://dx.doi.org/10.1016/j.cbpc.2005.04.007
PMid:15936234
Wool IG (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165.
PMid:8871397
Workenhe ST, Rise ML, Kibenge MJ and Kibenge FS (2010). The fight between the teleost fish immune response and aquatic viruses. Mol. Immunol. 47: 2525-2536.
http://dx.doi.org/10.1016/j.molimm.2010.06.009
PMid:20797792
Xu J, Wu S and Zhang X (2008). Novel function of QM protein of shrimp (Penaeus japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin. Cell Physiol. Biochem. 21: 473-480.
http://dx.doi.org/10.1159/000129640
PMid:18453755
Zhou F, Jiang S, Huang J, Qiu L, et al. (2011). Molecular analysis of the QM gene from Penaeus monodon and its expression on the different ovarian stages of development. Mol. Biol. Rep. 38: 1921-1927.
http://dx.doi.org/10.1007/s11033-010-0312-y
PMid:20872074