Publications

Found 10 results
Filters: Author is P. Zhou  [Clear All Filters]
2016
L. Hua, Zheng, W. Y., Xia, H., Zhou, P., Hua, L., Zheng, W. Y., Xia, H., and Zhou, P., Detecting the potential cancer association or metastasis by multi-omics data analysis, vol. 15, p. -, 2016.
L. Hua, Zheng, W. Y., Xia, H., Zhou, P., Hua, L., Zheng, W. Y., Xia, H., and Zhou, P., Detecting the potential cancer association or metastasis by multi-omics data analysis, vol. 15, p. -, 2016.
L. An, Xia, H., Zhou, P., Hua, L., An, L., Xia, H., Zhou, P., Hua, L., An, L., Xia, H., Zhou, P., and Hua, L., Exploration of association between EPHX1 and chronic obstructive pulmonary disease on the basis of combined data mining, vol. 15, p. -, 2016.
L. An, Xia, H., Zhou, P., Hua, L., An, L., Xia, H., Zhou, P., Hua, L., An, L., Xia, H., Zhou, P., and Hua, L., Exploration of association between EPHX1 and chronic obstructive pulmonary disease on the basis of combined data mining, vol. 15, p. -, 2016.
L. An, Xia, H., Zhou, P., Hua, L., An, L., Xia, H., Zhou, P., Hua, L., An, L., Xia, H., Zhou, P., and Hua, L., Exploration of association between EPHX1 and chronic obstructive pulmonary disease on the basis of combined data mining, vol. 15, p. -, 2016.
L. M. Yao, Jiang, Y. N., Lu, X. X., Wang, B., Zhou, P., and Wu, T. L., Overexpression of a glycine-rich protein gene in Lablab purpureus improves abiotic stress tolerance, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Ministry of Agriculture “948” Project (#2011-G (5)-16), the Natural Science Foundation of Shanghai (#15ZR1422900) and the Shanghai Municipal Science and Technology Commission Innovation Program (#14391900100). REFERENCESAmey RC, Schleicher T, Slinn J, Lewis M, et al (2008). Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur. J. Plant Pathol. 122: 41-55. http://dx.doi.org/10.1007/s10658-008-9313-2 Clough SJ, Bent AF, et al (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x D’Souza MR, Devaraj VR, et al (2010). Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol. Plant. 32: 341-353. http://dx.doi.org/10.1007/s11738-009-0412-2 Du H, Wu N, Fu J, Wang S, et al (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63: 6467-6480. http://dx.doi.org/10.1093/jxb/ers300 Du H, Wu N, Chang Y, Li X, et al (2013). Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol. Biol. 83: 475-488. http://dx.doi.org/10.1007/s11103-013-0103-7 Hammond JP, Bennett MJ, Bowen HC, Broadley MR, et al (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132: 578-596. http://dx.doi.org/10.1104/pp.103.020941 Kim JY, Kim WY, Kwak KJ, Oh SH, et al (2010a). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61: 2317-2325. http://dx.doi.org/10.1093/jxb/erq058 Kim JY, Kim WY, Kwak KJ, Oh SH, et al (2010b). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ. 33: 759-768. Kim MK, Jung HJ, Kim DH, Kang H, et al (2012). Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. Physiol. Plant. 146: 297-307. http://dx.doi.org/10.1111/j.1399-3054.2012.01628.x Kim YO, Pan S, Jung CH, Kang H, et al (2007). A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol. 48: 1170-1181. http://dx.doi.org/10.1093/pcp/pcm087 Long R, Yang Q, Kang J, Zhang T, et al (2013). Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis. Plant Cell Rep. 32: 1289-1298. http://dx.doi.org/10.1007/s00299-013-1443-0 Maass BL, Jamnadass RH, Hanson J, Pengelly BC, et al (2005). Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genet. Resour. Crop Evol. 52: 683-695. http://dx.doi.org/10.1007/s10722-003-6019-3 Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, et al (2009). AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. Planta 230: 253-265. http://dx.doi.org/10.1007/s00425-009-0940-4 Mousavi A, Hotta Y, et al (2005). Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. 120: 169-174. http://dx.doi.org/10.1385/ABAB:120:3:169 Murphy AM, Colucci PE, et al (1999). A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livest. Res. Rural Dev. 11: 2. Ortega-Amaro MA, Rodríguez-Hernández AA, Rodríguez-Kessler M, Hernández-Lucero E, et al (2015). Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front. Plant Sci. 5: 782. http://dx.doi.org/10.3389/fpls.2014.00782 Ringli C, Keller B, Ryser U, et al (2001). Glycine-rich proteins as structural components of plant cell walls. Cell. Mol. Life Sci. 58: 1430-1441. http://dx.doi.org/10.1007/PL00000786 Shi H, Chen L, Ye T, Liu X, et al (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 82: 209-217. http://dx.doi.org/10.1016/j.plaphy.2014.06.008 Streitner C, Danisman S, Wehrle F, Schöning JC, et al (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J. 56: 239-250. http://dx.doi.org/10.1111/j.1365-313X.2008.03591.x Tamura K, Dudley J, Nei M, Kumar S, et al (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 Yang DH, Kwak KJ, Kim MK, Park SJ, et al (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci. 214: 106-112. http://dx.doi.org/10.1016/j.plantsci.2013.10.006 Yao LM, Wang B, Cheng LJ, Wu TL, et al (2013). Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8: e58108. http://dx.doi.org/10.1371/journal.pone.0058108 Yuan J, Yang R, Wu TL, et al (2009). Bayesian mapping QTL for fruit and growth phenological traits in Lablab purpureus (L.) Sweet. Afr. J. Biotechnol. 8: 167-175.  
2012
J. J. Jiang, Wu, X., Zhou, P., Yu, W. Z., Huang, L. Z., and Li, X. X., Meta-analysis of the relationship between the LOC387715/ARMS2 polymorphism and polypoidal choroidal vasculopathy, vol. 11, pp. 4256-4267, 2012.
Bessho H, Honda S, Kondo N and Negi A (2011). The association of age-related maculopathy susceptibility 2 polymorphisms with phenotype in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol. Vis. 17: 977-982. PMid:21541271 PMCid:3084225   Chang YC, Chang TJ, Jiang YD, Kuo SS, et al. (2007). Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 56: 2631-2637. http://dx.doi.org/10.2337/db07-0421 PMid:17579206   Ciardella AP, Donsoff IM, Huang SJ, Costa DL, et al. (2004). Polypoidal choroidal vasculopathy. Surv. Ophthalmol. 49: 25-37. http://dx.doi.org/10.1016/j.survophthal.2003.10.007 PMid:14711438   DeAngelis MM, Ji F, Kim IK, Adams S, et al. (2007). Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch. Ophthalmol. 125: 49-54. http://dx.doi.org/10.1001/archopht.125.1.49 PMid:17210851   Dewan A, Liu M, Hartman S, Zhang SS, et al. (2006). HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314: 989-992. http://dx.doi.org/10.1126/science.1133807 PMid:17053108   Fritsche LG, Loenhardt T, Janssen A, Fisher SA, et al. (2008). Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat. Genet. 40: 892-896. http://dx.doi.org/10.1038/ng.170 PMid:18511946   Fuse N, Mengkegale M, Miyazawa A, Abe T, et al. (2011). Polymorphisms in ARMS2 (LOC387715) and LOXL1 genes in the Japanese with age-related macular degeneration. Am. J. Ophthalmol. 151: 550-556. http://dx.doi.org/10.1016/j.ajo.2010.08.048 PMid:21236409   Gotoh N, Nakanishi H, Hayashi H, Yamada R, et al. (2009). ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am. J. Ophthalmol. 147: 1037- 41, 1041.   Gotoh N, Yamashiro K, Nakanishi H, Saito M, et al. (2010). Haplotype analysis of the ARMS2/HTRA1 region in Japanese patients with typical neovascular age-related macular degeneration or polypoidal choroidal vasculopathy. Jpn. J. Ophthalmol. 54: 609-614. http://dx.doi.org/10.1007/s10384-010-0865-2 PMid:21191724   Hayashi H, Yamashiro K, Gotoh N, Nakanishi H, et al. (2010). CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest. Ophthalmol. Vis. Sci. 51: 5914-5919. http://dx.doi.org/10.1167/iovs.10-5554 PMid:20574013   Imamura Y, Engelbert M, Iida T, Freund KB, et al. (2010). Polypoidal choroidal vasculopathy: a review. Surv. Ophthalmol. 55: 501-515. http://dx.doi.org/10.1016/j.survophthal.2010.03.004 PMid:20850857   Jakobsdottir J, Conley YP, Weeks DE, Mah TS, et al. (2005). Susceptibility genes for age-related maculopathy on chromosome 10q26. Am. J. Hum. Genet. 77: 389-407. http://dx.doi.org/10.1086/444437 PMid:16080115 PMCid:1226205   Kondo N, Honda S, Ishibashi K, Tsukahara Y, et al. (2007). LOC387715/HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. Am. J. Ophthalmol. 144: 608-612. http://dx.doi.org/10.1016/j.ajo.2007.06.003 PMid:17692272   Laude A, Cackett PD, Vithana EN, Yeo IY, et al. (2010). Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog. Retin. Eye Res. 29: 19-29. http://dx.doi.org/10.1016/j.preteyeres.2009.10.001 PMid:19854291   Lee KY, Vithana EN, Mathur R, Yong VH, et al. (2008). Association analysis of CFH, C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy. Invest. Ophthalmol. Vis. Sci. 49: 2613- 2619. http://dx.doi.org/10.1167/iovs.07-0860 PMid:18515590   Leske MC, Wu SY, Hennis A, Nemesure B, et al. (2006). Nine-year incidence of age-related macular degeneration in the Barbados Eye Studies. Ophthalmology 113: 29-35. http://dx.doi.org/10.1016/j.ophtha.2005.08.012 PMid:16290049   Lima LH, Schubert C, Ferrara DC, Merriam JE, et al. (2010). Three major loci involved in age-related macular degeneration are also associated with polypoidal choroidal vasculopathy. Ophthalmology 117: 1567-1570. http://dx.doi.org/10.1016/j.ophtha.2009.12.018 PMid:20378180 PMCid:2901561   Machida S, Takahashi T, Gotoh N, Yoshimura N, et al. (2010). Monozygotic twins with polypoidal choroidal vasuculopathy. Clin. Ophthalmol. 4: 793-800. http://dx.doi.org/10.2147/OPTH.S11003 PMid:20689796 PMCid:2915866   Maruko I, Iida T, Saito M, Nagayama D, et al. (2007). Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am. J. Ophthalmol. 144: 15-22. http://dx.doi.org/10.1016/j.ajo.2007.03.047 PMid:17509509   Nakanishi H, Yamashiro K, Yamada R, Gotoh N, et al. (2010). Joint effect of cigarette smoking and CFH and LOC387715/ HTRA1 polymorphisms on polypoidal choroidal vasculopathy. Invest. Ophthalmol. Vis. Sci. 51: 6183-6187. http://dx.doi.org/10.1167/iovs.09-4948 PMid:20688737   Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, et al. (2005). Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 14: 3227-3236. http://dx.doi.org/10.1093/hmg/ddi353 PMid:16174643   Sakurada Y, Kubota T, Mabuchi F, Imasawa M, et al. (2008). Association of LOC387715 A69S with vitreous hemorrhage in polypoidal choroidal vasculopathy. Am. J. Ophthalmol. 145: 1058-1062. http://dx.doi.org/10.1016/j.ajo.2008.02.007 PMid:18400199   Sakurada Y, Kubota T, Imasawa M, Mabuchi F, et al. (2010). Association of LOC387715 A69S genotype with visual prognosis after photodynamic therapy for polypoidal choroidal vasculopathy. Retina 30: 1616-1621. http://dx.doi.org/10.1097/IAE.0b013e3181e587e3 PMid:20671585   Sakurada Y, Kubota T, Imasawa M, Mabuchi F, et al. (2011). Role of complement factor H I62V and age-related maculopathy susceptibility 2 A69S variants in the clinical expression of polypoidal choroidal vasculopathy. Ophthalmology 118: 1402-1407. PMid:21397333   Sho K, Takahashi K, Yamada H, Wada M, et al. (2003). Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch. Ophthalmol. 121: 1392-1396. http://dx.doi.org/10.1001/archopht.121.10.1392 PMid:14557174   Tang NP, Zhou B, Wang B and Yu RB (2009). HTRA1 promoter polymorphism and risk of age-related macular degeneration: a meta-analysis. Ann. Epidemiol. 19: 740-745. http://dx.doi.org/10.1016/j.annepidem.2009.03.002 PMid:19375943   Tsujikawa A, Ojima Y, Yamashiro K, Nakata I, et al. (2011). Association of lesion size and visual prognosis to polypoidal choroidal vasculopathy. Am. J. Ophthalmol. 151: 961-972. http://dx.doi.org/10.1016/j.ajo.2011.01.002 PMid:21457926   Wittke-Thompson JK, Pluzhnikov A and Cox NJ (2005). Rational inferences about departures from Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76: 967-986. http://dx.doi.org/10.1086/430507 PMid:15834813 PMCid:1196455   Yannuzzi LA, Wong DW, Sforzolini BS, Goldbaum M, et al. (1999). Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch. Ophthalmol. 117: 1503-1510. http://dx.doi.org/10.1001/archopht.117.11.1503 PMid:10565519   Yoshida T, Dewan A, Zhang H, Sakamoto R, et al. (2007). HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration. Mol. Vis. 13: 545-548. PMid:17438519 PMCid:2652018