Publications

Found 4 results
Filters: Author is X.-X. Yang  [Clear All Filters]
2012
M. - Y. Sun, Yang, X. - X., Xu, W. - W., Yao, G. - Y., Pan, H. - Z., and Li, M., Association of DNMT1 and DNMT3B polymorphisms with breast cancer risk in Han Chinese women from South China, vol. 11, pp. 4330-4341, 2012.
Bestor TH (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet. 9: 2395-2402. http://dx.doi.org/10.1093/hmg/9.16.2395 PMid:11005794   Brenner C, Deplus R, Didelot C, Loriot A, et al. (2005). Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24: 336-346. http://dx.doi.org/10.1038/sj.emboj.7600509 PMid:15616584 PMCid:545804   Cai FF, Kohler C, Zhang B, Wang MH, et al. (2011). Epigenetic therapy for breast cancer. Int. J. Mol. Sci. 12: 4465-4487. http://dx.doi.org/10.3390/ijms12074465 PMid:21845090 PMCid:3155363   Cebrian A, Pharoah PD, Ahmed S, Ropero S, et al. (2006). Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis 27: 1661-1669. http://dx.doi.org/10.1093/carcin/bgi375 PMid:16501248   Deplus R, Brenner C, Burgers WA, Putmans P, et al. (2002). Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res. 30: 3831-3838. http://dx.doi.org/10.1093/nar/gkf509 PMid:12202768 PMCid:137431   Easwaran HP, Schermelleh L, Leonhardt H and Cardoso MC (2004). Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep. 5: 1181-1186. http://dx.doi.org/10.1038/sj.embor.7400295 PMid:15550930 PMCid:1299190   Egger G, Liang G, Aparicio A and Jones PA (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457-463. http://dx.doi.org/10.1038/nature02625 PMid:15164071   Ehrlich M (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400-5413. http://dx.doi.org/10.1038/sj.onc.1205651 PMid:12154403   Esteller M, Silva JM, Dominguez G, Bonilla F, et al. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 92: 564-569. http://dx.doi.org/10.1093/jnci/92.7.564 PMid:10749912   Fan H, Liu D, Qiu X, Qiao F, et al. (2010). A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 8: 12. http://dx.doi.org/10.1186/1741-7015-8-12 PMid:20128888 PMCid:2829483   Franke A, McGovern DP, Barrett JC, Wang K, et al. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42: 1118-1125. http://dx.doi.org/10.1038/ng.717 PMid:21102463 PMCid:3299551   Fuks F, Burgers WA, Godin N, Kasai M, et al. (2001). Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20: 2536-2544. http://dx.doi.org/10.1093/emboj/20.10.2536 PMid:11350943 PMCid:125250   Goll MG, Kirpekar F, Maggert KA, Yoder JA, et al. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311: 395-398. http://dx.doi.org/10.1126/science.1120976 PMid:16424344   Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, et al. (2008). Many sequence variants affecting diversity of adult human height. Nat. Genet. 40: 609-615. http://dx.doi.org/10.1038/ng.122 PMid:18391951   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Herman JG and Baylin SB (2003). Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349: 2042-2054. http://dx.doi.org/10.1056/NEJMra023075 PMid:14627790   Hu J, Fan H, Liu D, Zhang S, et al. (2010). DNMT3B promoter polymorphism and risk of gastric cancer. Dig. Dis. Sci. 55: 1011-1016. http://dx.doi.org/10.1007/s10620-009-0831-3 PMid:19517237   Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90. http://dx.doi.org/10.3322/caac.20107 PMid:21296855   Jones PA and Baylin SB (2002). The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3: 415-428. PMid:12042769   Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, et al. (2003). Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 192: 75-82. http://dx.doi.org/10.1016/S0304-3835(02)00689-4   Kang ES, Park CW and Chung JH (2001). Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem. Biophys. Res. Commun. 289: 862-868. http://dx.doi.org/10.1006/bbrc.2001.6057 PMid:11735126   Kelemen LE, Sellers TA, Schildkraut JM, Cunningham JM, et al. (2008). Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer Res. 68: 2498-2506. http://dx.doi.org/10.1158/0008-5472.CAN-07-5165 PMid:18381459 PMCid:2786310   Kim GD, Ni J, Kelesoglu N, Roberts RJ, et al. (2002). Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J. 21: 4183-4195. http://dx.doi.org/10.1093/emboj/cdf401 PMid:12145218 PMCid:126147   Lee SJ, Jeon HS, Jang JS, Park SH, et al. (2005). DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis 26: 403-409. http://dx.doi.org/10.1093/carcin/bgh307 PMid:15528220   Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, et al. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13: 1192-1200. http://dx.doi.org/10.1016/S0960-9822(03)00432-9
F. - R. Wu, Liu, Y., Shang, M. - B., Yang, X. - X., Ding, B., Gao, J. - G., Wang, R., and Li, W. - Y., Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos, vol. 11, pp. 1099-1108, 2012.
Baqir S, Zhou Q, Renard JP and Smith LC (2002). Aberrant expression profile of imprinted genes in cloned mouse embryos reconstructed with ES cells treated with 5AzaC or TSA. Biol. Reprod. 66: 244-250. Dey SK, Lim H, Das SK, Reese J, et al. (2004). Molecular cues to implantation. Endocr. Rev. 25: 341-373. http://dx.doi.org/10.1210/er.2003-0020 PMid:15180948 Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, et al. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62: 1526-1535. http://dx.doi.org/10.1095/biolreprod62.6.1526 PMid:10819752 Eissenberg JC and Shilatifard A (2010). Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339: 240-249. http://dx.doi.org/10.1016/j.ydbio.2009.08.017 PMid:19703438 Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, et al. (2005). Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438: 1181-1185. http://dx.doi.org/10.1038/nature04290 PMid:16372014 Fleming TP, Kwong WY, Porter R, Ursell E, et al. (2004). The embryo and its future. Biol. Reprod. 71: 1046-1054. http://dx.doi.org/10.1095/biolreprod.104.030957 PMid:15215194 Glaser S, Lubitz S, Loveland KL, Ohbo K, et al. (2009). The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2: 5. http://dx.doi.org/10.1186/1756-8935-2-5 Guillemette B, Drogaris P, Lin HH, Armstrong H, et al. (2011). H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet. 7: e1001354. http://dx.doi.org/10.1371/journal.pgen.1001354 PMid:21483810    PMCid:3069113 Hamatani T, Carter MG, Sharov AA and Ko MS (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6: 117-131. http://dx.doi.org/10.1016/S1534-5807(03)00373-3 Huang JC, Yan LY, Lei ZL, Miao YL, et al. (2007a). Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol. Reprod. 77: 666-670. http://dx.doi.org/10.1095/biolreprod.107.062703 PMid:17582009 Huang JC, Lei ZL, Shi LH, Miao YL, et al. (2007b). Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem. Biophys. Res. Commun. 354: 77-83. http://dx.doi.org/10.1016/j.bbrc.2006.12.163 PMid:17210126 Kim JM, Ogura A, Nagata M and Aoki F (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod. 67: 760-766. http://dx.doi.org/10.1095/biolreprod.101.000612 PMid:12193382 Kim JM, Liu H, Tazaki M, Nagata M, et al. (2003). Changes in histone acetylation during mouse oocyte meiosis. J. Cell Biol. 162: 37-46. http://dx.doi.org/10.1083/jcb.200303047 PMid:12835313    PMCid:2172711 Li L, Zheng P and Dean J (2010). Maternal control of early mouse development. Development 137: 859-870. http://dx.doi.org/10.1242/dev.039487 PMid:20179092    PMCid:2834456 McLaren A (1971). Blastocysts in the mouse uterus: the effect of ovariectomy, progesterone and oestrogen. J. Endocrinol. 50: 515-526. http://dx.doi.org/10.1677/joe.0.0500515 PMid:5558058 Murata K, Kouzarides T, Bannister AJ and Gurdon JB (2010). Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin 3: 4. http://dx.doi.org/10.1186/1756-8935-3-4 Murray K (1964). The occurrence of epsilon-n-methyl lysine in histones. Biochemistry 3: 10-15. http://dx.doi.org/10.1021/bi00889a003 PMid:14114491 Nagy A, Gertsenstei M, Vintersten K and Behringer R (2003). Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 161-208. Nightingale KP, Gendreizig S, White DA, Bradbury C, et al. (2007). Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem. 282: 4408-4416. http://dx.doi.org/10.1074/jbc.M606773200 PMid:17166833 Ruthenburg AJ, Allis CD and Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25: 15-30. http://dx.doi.org/10.1016/j.molcel.2006.12.014 PMid:17218268 Shi X, Hong T, Walter KL, Ewalt M, et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96-99. PMid:16728974    PMCid:3089773 Shilatifard A (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20: 341-348. http://dx.doi.org/10.1016/j.ceb.2008.03.019 PMid:18508253    PMCid:2504688 Strömstedt M, Keeney DS, Waterman MR, Paria BC, et al. (1996). Preimplantation mouse blastocysts fail to express CYP genes required for estrogen biosynthesis. Mol. Reprod. Dev. 43: 428-436. http://dx.doi.org/10.1002/(SICI)1098-2795(199604)43:4<428::AID-MRD4>3.0.CO;2-R Wysocka J, Swigut T, Xiao H, Milne TA, et al. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86-90. PMid:16728976 Yamanaka K, Sugimura S, Wakai T, Kawahara M, et al. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 55: 638-644. http://dx.doi.org/10.1262/jrd.20245 PMid:19700928 Young LE and Fairburn HR (2000). Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology 53: 627-648. http://dx.doi.org/10.1016/S0093-691X(99)00263-0 Zhao Z, Fan L and Frick KM (2010). Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc. Natl. Acad. Sci. U. S. A. 107: 5605-5610. http://dx.doi.org/10.1073/pnas.0910578107 PMid:20212170    PMCid:2851775
F. - X. Li, Tan, J. - Y., Yang, X. - X., Wu, Y. - S., Wu, D., and Li, M., Genetic variants on 17q21 are associated with asthma in a Han Chinese population, vol. 11, pp. 340-347, 2012.
Bisgaard H, Bonnelykke K, Sleiman PM, Brasholt M, et al. (2009). Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am. J. Respir. Crit. Care Med. 179: 179-185. http://dx.doi.org/10.1164/rccm.200809-1436OC PMid:19029000 Bouzigon E, Corda E, Aschard H, Dizier MH, et al. (2008). Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 359: 1985-1994. http://dx.doi.org/10.1056/NEJMoa0806604 PMid:18923164 Eder W, Ege MJ and von Mutius E (2006). The asthma epidemic. N. Engl. J. Med. 355: 2226-2235. http://dx.doi.org/10.1056/NEJMra054308 PMid:17124020 Flory JH, Sleiman PM, Christie JD, Annaiah K, et al. (2009). 17q12-21 variants interact with smoke exposure as a risk factor for pediatric asthma but are equally associated with early-onset versus late-onset asthma in North Americans of European ancestry. J. Allergy Clin. Immunol. 124: 605-607. http://dx.doi.org/10.1016/j.jaci.2009.05.047 PMid:19660801 Galanter J, Choudhry S, Eng C, Nazario S, et al. (2008). ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am. J. Respir. Crit. Care Med. 177: 1194-1200. http://dx.doi.org/10.1164/rccm.200711-1644OC PMid:18310477 PMCid:2408437 Halapi E, Gudbjartsson DF, Jonsdottir GM, Bjornsdottir US, et al. (2010). A sequence variant on 17q21 is associated with age at onset and severity of asthma. Eur. J. Hum. Genet. 18: 902-908. http://dx.doi.org/10.1038/ejhg.2010.38 PMid:20372189 PMCid:2987388 Hirota T, Harada M, Sakashita M, Doi S, et al. (2008). Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J. Allergy Clin. Immunol. 121: 769-770. http://dx.doi.org/10.1016/j.jaci.2007.09.038 PMid:18155279 Hjelmqvist L, Tuson M, Marfany G, Herrero E, et al. (2002). ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3: RESEARCH0027. Leung TF, Sy HY, Ng MC, Chan IH, et al. (2009). Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy 64: 621-628. http://dx.doi.org/10.1111/j.1398-9995.2008.01873.x PMid:19175592 Li X, Yang XX, Hu NY, Sun JZ, et al. (2011). A risk-associated single nucleotide polymorphism of SMAD7 is common to colorectal, gastric, and lung cancers in a Han Chinese population. Mol. Biol. Rep. 38: 5093-5097. http://dx.doi.org/10.1007/s11033-010-0656-3 PMid:21221812 Madore AM, Tremblay K, Hudson TJ and Laprise C (2008). Replication of an association between 17q21 SNPs and asthma in a French-Canadian familial collection. Hum. Genet. 123: 93-95. http://dx.doi.org/10.1007/s00439-007-0444-x PMid:17992541 Moffatt MF, Kabesch M, Liang L, Dixon AL, et al. (2007). Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470-473. http://dx.doi.org/10.1038/nature06014 PMid:17611496 Ober C and Hoffjan S (2006). Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 7: 95-100. http://dx.doi.org/10.1038/sj.gene.6364284 PMid:16395390 Sleiman PM, Annaiah K, Imielinski M, Bradfield JP, et al. (2008). ORMDL3 variants associated with asthma susceptibility in North Americans of European ancestry. J. Allergy Clin. Immunol. 122: 1225-1227. http://dx.doi.org/10.1016/j.jaci.2008.06.041 PMid:18760456 Tavendale R, MacGregor DF, Mukhopadhyay S and Palmer CN (2008). A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J. Allergy Clin. Immunol. 121: 860-863. http://dx.doi.org/10.1016/j.jaci.2008.01.015 PMid:18395550 Wjst M (2008). ORMDL3 - guilt by association? Clin. Exp. Allergy 38: 1579-1581. http://dx.doi.org/10.1111/j.1365-2222.2008.03086.x Wu H, Romieu I, Sienra-Monge JJ, Li H, et al. (2009). Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy 64: 629-635. http://dx.doi.org/10.1111/j.1398-9995.2008.01912.x PMid:19133921 PMCid:2697826