Publications
Found 2 results
Filters: Author is Y. Mu [Clear All Filters]
“The genetic variant rs401681C/T is associated with the risk of non-small cell lung cancer in a Chinese mainland population”, vol. 12. pp. 67-73, 2013.
, Bae EY, Lee SY, Kang BK, Lee EJ, et al. (2012). Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology 17: 699-706.
http://dx.doi.org/10.1111/j.1440-1843.2012.02165.x
PMid:22404340
Ginsberg MS (2005). Epidemiology of lung cancer. Semin. Roentgenol. 40: 83-89.
http://dx.doi.org/10.1053/j.ro.2005.01.007
PMid:15898406
Girard N, Lou E, Azzoli CG, Reddy R, et al. (2010). Analysis of genetic variants in never-smokers with lung cancer facilitated by an Internet-based blood collection protocol: a preliminary report. Clin. Cancer Res. 16: 755-763.
http://dx.doi.org/10.1158/1078-0432.CCR-09-2437
PMid:20068085 PMCid:2808124
Haiman CA, Chen GK, Vachon CM, Canzian F, et al. (2011). A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat. Genet. 43: 1210-1214.
http://dx.doi.org/10.1038/ng.985
PMid:22037553 PMCid:3279120
Hardin M, Zielinski J, Wan ES, Hersh CP, et al. (2012). CHRNA3/5, IREB2, and ADCY2 are associated with Severe COPD in Poland. Am. J. Respir. Cell Mol. Biol. [Epub ahead of print].
http://dx.doi.org/10.1165/rcmb.2012-0011OC
PMid:22461431
Haugen A, Ryberg D, Mollerup S, Zienolddiny S, et al. (2000). Gene-environment interactions in human lung cancer. Toxicol. Lett. 112-113: 233-237.
http://dx.doi.org/10.1016/S0378-4274(99)00275-1
Hung RJ, McKay JD, Gaborieau V, Boffetta P, et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633-637.
http://dx.doi.org/10.1038/nature06885
PMid:18385738
Kiyohara C, Yoshimasu K, Takayama K and Nakanishi Y (2007). Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol. 3: 617-627.
http://dx.doi.org/10.2217/14796694.3.6.617
PMid:18041914
Kollarova H, Janout V and Cizek L (2002). Epidemiology of lung cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 146: 103-114.
http://dx.doi.org/10.5507/bp.2002.022
PMid:12572908
Lam WK (2005). Lung cancer in Asian women-the environment and genes. Respirology 10: 408-417.
http://dx.doi.org/10.1111/j.1440-1843.2005.00723.x
PMid:16135162
Law MH, Montgomery GW, Brown KM, Martin NG, et al. (2012). Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J. Invest. Dermatol. 132: 485-487.
http://dx.doi.org/10.1038/jid.2011.322
PMid:21993562 PMCid:3258346
Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 31: 1977-1981.
http://dx.doi.org/10.1093/carcin/bgq179
PMid:20802237 PMCid:2966556
McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406.
http://dx.doi.org/10.1038/ng.254
PMid:18978790 PMCid:2748187
Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227.
http://dx.doi.org/10.1038/ng.296
PMid:19151717
Sanchez-Cespedes M (2009). Lung cancer biology: a genetic and genomic perspective. Clin. Transl. Oncol. 11: 263-269.
http://dx.doi.org/10.1007/s12094-009-0353-7
PMid:19451058
Sugimura H, Tao H, Suzuki M, Mori H, et al. (2011). Genetic susceptibility to lung cancer. Front Biosci. 3: 1463-1477.
http://dx.doi.org/10.2741/237
Thill PG, Goswami P, Berchem G and Domon B (2011). Lung cancer statistics in Luxembourg from 1981 to 2008. Bull. Soc. Sci. Med. Grand Duche Luxemb. 43-55.
PMid:22272445
Vossen RH, Aten E, Roos A and den Dunnen JT (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum. Mutat. 30: 860-866.
http://dx.doi.org/10.1002/humu.21019
PMid:19418555
Weinrich SL, Pruzan R, Ma L, Ouellette M, et al. (1997). Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17: 498-502.
http://dx.doi.org/10.1038/ng1297-498
PMid:9398860
Wu C, Hu Z, Yu D, Huang L, et al. (2009). Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69: 5065-5072.
http://dx.doi.org/10.1158/0008-5472.CAN-09-0081
PMid:19491260
“Phenotype characterization and sequence analysis of BMP2 and BMP4 variants in two Mexican families with oligodontia”, vol. 11, pp. 4110-4120, 2012.
,
Aberg T, Wozney J and Thesleff I (1997). Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev. Dyn. 210: 383-396.
http://dx.doi.org/10.1002/(SICI)1097-0177(199712)210:4<383::AID-AJA3>3.0.CO;2-C
Arte S, Nieminen P, Apajalahti S, Haavikko K, et al. (2001). Characteristics of incisor-premolar hypodontia in families. J. Dent. Res. 80: 1445-1450.
http://dx.doi.org/10.1177/00220345010800051201
PMid:11437217
Bei M, Kratochwil K and Maas RL (2000). BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development. Development 127: 4711-4718.
PMid:11023873
Capasso M, Ayala F, Russo R, Avvisati RA, et al. (2009). A predicted functional single-nucleotide polymorphism of bone morphogenetic protein-4 gene affects mRNA expression and shows a significant association with cutaneous melanoma in Southern Italian population. J. Cancer Res. Clin. Oncol. 135: 1799-1807.
http://dx.doi.org/10.1007/s00432-009-0628-y
PMid:19557432
Chen S, Gluhak-Heinrich J, Martinez M, Li T, et al. (2008). Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J. Biol. Chem. 283: 19359- 19370.
http://dx.doi.org/10.1074/jbc.M709492200
PMid:18424784 PMCid:2443643
Choi JY, Shin CS, Hong YC and Kang D (2006). Single-nucleotide polymorphisms and haplotypes of bone morphogenetic protein genes and peripheral bone mineral density in young Korean men and women. Calcif. Tissue Int. 78: 203-211.
http://dx.doi.org/10.1007/s00223-005-0139-z
PMid:16604289
Feng J, Yang G, Yuan G, Gluhak-Heinrich J, et al. (2011). Abnormalities in the enamel in bmp2-deficient mice. Cells Tissues Organs 194: 216-221.
http://dx.doi.org/10.1159/000324644
PMid:21597270 PMCid:3178081
Frazier-Bowers SA, Scott MR, Cavender A, Mensah J, et al. (2002). Mutational analysis of families affected with molar oligodontia. Connect. Tissue Res. 43: 296-300.
PMid:12489173
Gabris K, Tarjan I, Csiki P, Konrad F, et al. (2001). Prevalence of congenital hypodontia in the permanent dentition and its treatment. Fogorv. Sz. 94: 137-140.
PMid:11573454
Gerits A, Nieminen P, De MS and Carels C (2006). Exclusion of coding region mutations in MSX1, PAX9 and AXIN2 in eight patients with severe oligodontia phenotype. Orthod. Craniofac. Res. 9: 129-136.
http://dx.doi.org/10.1111/j.1601-6343.2006.00367.x
PMid:16918677
Gluhak-Heinrich J, Guo D, Yang W, Harris MA, et al. (2010). New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone 46: 1533-1545.
http://dx.doi.org/10.1016/j.bone.2010.02.024
PMid:20206312 PMCid:2875306
Han D, Gong Y, Wu H, Zhang X, et al. (2008). Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis. Eur. J. Med. Genet. 51: 536-546.
http://dx.doi.org/10.1016/j.ejmg.2008.06.002
PMid:18657636
Kapadia H, Mues G and D'Souza R (2007). Genes affecting tooth morphogenesis. Orthod. Craniofac. Res. 10: 237-244.
http://dx.doi.org/10.1111/j.1601-6343.2007.00407.x
PMid:17973693
Kong H, Wang Y, Patel M, Mues G, et al. (2011). Regulation of bmp4 expression in odontogenic mesenchyme: from simple to complex. Cells Tissues Organs 194: 156-160.
http://dx.doi.org/10.1159/000324747
PMid:21546760 PMCid:3178073
Lammi L, Halonen K, Pirinen S, Thesleff I, et al. (2003). A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur. J. Hum. Genet. 11: 866-871.
http://dx.doi.org/10.1038/sj.ejhg.5201060
PMid:14571272
Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, et al. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13: 424-436.
http://dx.doi.org/10.1101/gad.13.4.424
PMid:10049358 PMCid:316469
Lin JY, Chen YJ, Huang YL, Tang GP, et al. (2008). Association of bone morphogenetic protein 4 gene polymorphisms with nonsyndromic cleft lip with or without cleft palate in Chinese children. DNA Cell Biol. 27: 601-605.
http://dx.doi.org/10.1089/dna.2008.0777
PMid:18771417
Liu W, Dong X, Mai M, Seelan RS, et al. (2000). Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat. Genet. 26: 146-147.
http://dx.doi.org/10.1038/79859
PMid:11017067
Meng XL, Wang H, Yang H, Hai Y, et al. (2010). T allele at site 6007 of bone morphogenetic protein-4 gene increases genetic susceptibility to ossification of the posterior longitudinal ligament in male Chinese Han population. Chin. Med. J. 123: 2537-2542.
Nieminen P (2009). Genetic basis of tooth agenesis. J. Exp. Zool. B Mol. Dev. Evol. 312B: 320-342.
Nieminen P, Pekkanen M, Aberg T and Thesleff I (1998). A graphical www-database on gene expression in tooth. Eur. J. Oral Sci. 106: 7-11.
PMid:9541196
Noor A, Windpassinger C, Vitcu I, Orlic M, et al. (2009). Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. Am. J. Hum. Genet. 84: 519-523.
http://dx.doi.org/10.1016/j.ajhg.2009.03.007
PMid:19344874 PMCid:2667979
Ramesh BL, Wilson SG, Dick IM, Islam FM, et al. (2005). Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone 36: 555-561.
http://dx.doi.org/10.1016/j.bone.2004.12.005
PMid:15777683
Scarel RM, Trevilatto PC, Di Hipólito O Jr, Camargo LE, et al. (2000). Absence of mutations in the homeodomain of the MSX1 gene in patients with hypodontia. Am. J. Med. Genet. 92: 346-349.
http://dx.doi.org/10.1002/1096-8628(20000619)92:5<346::AID-AJMG10>3.0.CO;2-A
Schalk-van der Weide Y, Steen WH and Bosman F (1992). Distribution of missing teeth and tooth morphology in patients with oligodontia. ASDC J. Dent. Child. 59: 133-140.
PMid:1583198
Schrauwen I, Thys M, Vanderstraeten K, Fransen E, et al. (2008). Association of bone morphogenetic proteins with otosclerosis. J. Bone Miner. Res. 23: 507-516.
http://dx.doi.org/10.1359/jbmr.071112
PMid:18021008 PMCid:2669162
Stockton DW, Das P, Goldenberg M, D'Souza RN, et al. (2000). Mutation of PAX9 is associated with oligodontia. Nat. Genet. 24: 18-19.
http://dx.doi.org/10.1038/71634
PMid:10615120
Thesleff I (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. J. Cell Sci. 116: 1647-1648.
http://dx.doi.org/10.1242/jcs.00410
PMid:12665545
Thomadakis G, Ramoshebi LN, Crooks J, Rueger DC, et al. (1999). Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur. J. Oral Sci. 107: 368-377.
http://dx.doi.org/10.1046/j.0909-8836.1999.eos107508.x
PMid:10515202
Valdes AM, Hart DJ, Jones KA, Surdulescu G, et al. (2004). Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis Rheum. 50: 2497-2507.
http://dx.doi.org/10.1002/art.20443
PMid:15334463
Valdes AM, Van Oene M, Hart DJ, Surdulescu GL, et al. (2006). Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. Arthritis Rheum. 54: 533-539.
http://dx.doi.org/10.1002/art.21621
PMid:16453284
van den Boogaard MJ, Dorland M, Beemer FA and van Amstel HK (2000). MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat. Genet. 24: 342-343.
http://dx.doi.org/10.1038/74155
PMid:10742093
Wang H, Liu D, Yang Z, Tian B, et al. (2008). Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur. Spine J. 17: 956-964.
http://dx.doi.org/10.1007/s00586-008-0651-8
PMid:18389292 PMCid:2443260
Zhang H and Bradley A (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977-2986.
PMid:8898212