Found 6 results
Filters: Author is S.Z. Wang  [Clear All Filters]
Y. H. Zhang, Dai, L. S., Ma, T. H., Wang, S. Z., Guo, J., Li, F. J., Zhang, S. M., Sun, B. X., Liu, D. F., Gao, Y., and Zhang, J. B., Association of T1740C polymorphism of L-FABP with meat quality traits in Junmu No. 1 white swine, vol. 12, pp. 235-241, 2013.
Atshaves BP, McIntosh AM, Lyuksyutova OI, Zipfel W, et al. (2004). Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J. Biol. Chem. 279: 30954-30965. PMid:15155724   Curi RA, Chardulo LA, Mason MC, Arrigoni MD, et al. (2009). Effect of single nucleotide polymorphisms of CAPN1 241 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Genet. 40: 456-462. PMid:19392828   Di Pietro SM and Santomé JA (1996). Presence of two new fatty acid binding proteins in catfish liver. Biochem. Cell Biol. 74: 675-680. PMid:9018375   Di Pietro SM, Veerkamp JH and Santomé JA (1999). Isolation, amino acid sequence determination and binding properties of two fatty-acid-binding proteins from axolotl (Ambistoma mexicanum) liver. Evolutionary relationship. Eur. J. Biochem. 259: 127-134. PMid:9914484   Geay Y, Bauchart D, Hocquette JF and Culioli J (2001). Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 41: 1-26. PMid:11368241   Gertow K, Bellanda M, Eriksson P, Boquist S, et al. (2004). Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome. J. Clin. Endocrinol. Metab. 89: 392-399. PMid:14715877   Glatz JF and van der Vusse GJ (1996). Cellular fatty acid-binding proteins: their function and physiological significance. Prog. Lipid Res. 35: 243-282.   Gomez LC, Real SM, Ojeda MS, Gimenez S, et al. (2007). Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina. BMC Med. Genet. 8: 39. PMid:17594477 PMCid:1925061   Heyer A and Lebret B (2007). Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J. Anim. Sci. 85: 769-778. PMid:17296780   Jiang YZ, Li XW and Yang GX (2006). Sequence characterization, tissue-specific expression and polymorphism of the porcine (Sus scrofa) liver-type fatty acid binding protein gene. Yi Chuan Xue Bao 33: 598-606. PMid:16875317   Jurie C, Cassar-Malek I, Bonnet M, Leroux C, et al. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85: 2660-2669. PMid:17565066   Kamalakar RB, Chiba LI, Divakala KC, Rodning SP, et al. (2009). Effect of the degree and duration of early dietary amino acid restrictions on subsequent and overall pig performance and physical and sensory characteristics of pork. J. Anim. Sci. 87: 3596-3606. PMid:19574567   Li X, Kim SW, Choi JS, Lee YM, et al. (2010). Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol. Biol. Rep. 37: 3931-3939. PMid:20300864   Liu K, Wang G, Zhao SH, Liu B, et al. (2010). Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol. Biol. Rep. 37: 2711-2717. PMid:19757168   Nemecz G, Jefferson JR and Schroeder F (1991). Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J. Biol. Chem. 266: 17112-17123. PMid:1894608   Richieri GV, Ogata RT and Kleinfeld AM (1994). Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269: 23918-23930. PMid:7929039   Rolf B, Oudenampsen-Krüger E, Börchers T, Faergeman NJ, et al. (1995). Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim. Biophys. Acta 1259: 245-253.   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.   Switonski M, Stachowiak M, Cieslak J, Bartz M, et al. (2010). Genetics of fat tissue accumulation in pigs: a comparative approach. J. Appl. Genet. 51: 153-168. PMid:20453303   Thompson J, Winter N, Terwey D, Bratt J, et al. (1997). The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J. Biol. Chem. 272: 7140-7150. PMid:9054409
S. Z. Wang, Hu, X. X., Wang, Z. P., Li, X. C., Wang, Q. G., Wang, Y. X., Tang, Z. Q., and Li, H., Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7, vol. 11, pp. 956-965, 2012.
Abasht B, Dekkers JC and Lamont SJ (2006). Review of quantitative trait loci identified in the chicken. Poult. Sci. 85: 2079-2096. PMid:17135661 Ambo M, Moura AS, Ledur MC, Pinto LF, et al. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet. 40: 200-208. PMid:19170675 Andersson L and Georges M (2004). Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5: 202-212. PMid:14970822 Ankra-Badu GA, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, et al. (2010). Mapping QTL for growth and shank traits in chickens divergently selected for high or low body weight. Anim. Genet. 41: 400-405. PMid:20096032 Atzmon G, Blum S, Feldman M, Lavi U, et al. (2007). Detection of agriculturally important QTLs in chickens and analysis of the factors affecting genotyping strategy. Cytogenet. Genome Res. 117: 327-337. PMid:17675875 Atzmon G, Blum S, Feldman M, Cahaner A, et al. (2008). QTLs detected in a multigenerational resource chicken population. J. Hered. 99: 528-538. PMid:18492652 Brockmann GA, Haley CS, Renne U, Knott SA, et al. (1998). Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150: 369-381. PMid:9725853    PMCid:1460298 Campos RL, Nones K, Ledur MC, Moura AS, et al. (2009). Quantitative trait loci associated with fatness in a broiler-layer cross. Anim. Genet. 40: 729-736. PMid:19466938 Carlborg O, Kerje S, Schutz K, Jacobsson L, et al. (2003). A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13: 413-421. PMid:12618372    PMCid:430275 Choct M, Naylor A, Hutton O and Nolan J (2000). Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No. 98/123. Available at []. Accessed September 20, 2010. Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971. PMid:7851788    PMCid:1206241 Deeb N and Lamont SJ (2002). Genetic architecture of growth and body composition in unique chicken populations. J. Hered. 93: 107-118. PMid:12140270 Green P, Falls K and Crooks S (1990). Program CRI-MAP, Version 2.4. Washington University School of Medicine, St. Louis. Hu ZL, Fritz ER and Reecy JM (2007). AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 35: D604-D609. PMid:17135205    PMCid:1781224 Ikeobi CO, Woolliams JA, Morrice DR, Law A, et al. (2002). Quantitative trait loci affecting fatness in the chicken. Anim. Genet. 33: 428-435. PMid:12464017 Jacobsson L, Park HB, Wahlberg P, Fredriksson R, et al. (2005). Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86: 115-125. PMid:16356285 Kerje S, Carlborg O, Jacobsson L, Schutz K, et al. (2003). The two-fold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34: 264-274. PMid:12873214 Knott SA, Marklund L, Haley CS, Andersson K, et al. (1998). Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069-1080. PMid:9611214    PMCid:1460207 Lagarrigue S, Pitel F, Carre W, Abasht B, et al. (2006). Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet. Sel. Evol. 38: 85-97. PMCid:2689300 Le Bihan-Duval E, Millet N and Remignon H (1999). Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poult. Sci. 78: 822-826. PMid:10438124 Le Mignon G, Pitel F, Gilbert H, Le Bihan-Duval E, et al. (2009). A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim. Genet. 40: 157-164. PMid:19243366 Liu X, Li H, Wang S, Hu X, et al. (2007). Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86: 1084-1089. PMid:17495077 Marklund L, Nystrom PE, Stern S, Andersson-Eklund L, et al. (1999). Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82: 134-141. PMid:10098263 McElroy JP, Kim JJ, Harry DE, Brown SR, et al. (2006). Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85: 593-605. PMid:16615342 Nadaf J, Pitel F, Gilbert H, Duclos MJ, et al. (2009). QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol. Genomics 38: 241-249. PMid:19531576 National Research Council (1994). Nutrient Requirements of Poultry. Natl. Acad. Press, Washington. Nones K, Ledur MC, Ruy DC, Baron EE, et al. (2006). Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100. PMid:16573522 Park HB, Jacobsson L, Wahlberg P, Siegel PB, et al. (2006). QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol. Genomics 25: 216-223. PMid:16390876 SAS Institute (2004). JMP User’s Guide. SAS Institute Inc., Cary. Schmid M, Nanda I, Guttenbach M, Steinlein C, et al. (2000). First report on chicken genes and chromosomes 2000. Cytogenet. Cell Genet. 90: 169-218. Seaton G, Hernandez J, Grunchec JA, White I, et al. (2006). GridQTL: A Grid Portal for QTL Mapping of Compute Intensive Datasets. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 13-18. Sewalem A, Morrice DM, Law A, Windsor D, et al. (2002). Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult. Sci. 81: 1775-1781. PMid:12512565 Siwek M, Cornelissen SJ, Buitenhuis AJ, Nieuwland MG, et al. (2004). Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poult. Sci. 83: 853-859. PMid:15206609 Spelman RJ and Bovenhuis H (1998). Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29: 77-84. PMid:9699266 Tercic D, Holcman A, Dovc P, Morrice DR, et al. (2009). Identification of chromosomal regions associated with growth and carcass traits in an F(3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40: 743-748. PMid:19466935 Wahlberg P, Carlborg O, Foglio M, Tordoir X, et al. (2009). Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10: 248. PMid:19473501    PMCid:2695486 Wang Q, Li H, Li N, Leng L, et al. (2006). Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult. Sci. 85: 429-434. PMid:16553271 Zhang S, Li H and Shi H (2006). Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity. Poult. Sci. 85: 178-184. PMid:16523611 Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006a). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poult. Sci 85: 1700-1711. PMid:17012159 Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006b). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85: 1712-1721. PMid:17012160