Publications

Found 9 results
Filters: Author is H. Ma  [Clear All Filters]
2013
Y. Chen, Chen, K., Li, M., Li, C., Ma, H., Bai, Y. S., Zhu, X. D., and Fu, Q., Genes associated with disc degeneration identified using microarray gene expression profiling and bioinformatics analysis, vol. 12, pp. 1431-1439, 2013.
Alibés A, Yankilevich P, Ca-da A and Díaz-Uriarte R (2007). IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinformatics 8: 9. http://dx.doi.org/10.1186/1471-2105-8-9 PMid:17214880 PMCid:1779800   Aoki Y, Ohtori S, Takahashi K, Ino H, et al. (2004). Innervation of the lumbar intervertebral disc by nerve growth factor-dependent neurons related to inflammatory pain. Spine 29: 1077-1081. http://dx.doi.org/10.1097/00007632-200405150-00005 PMid:15131432   Baer AE, Wang JY, Kraus VB and Setton LA (2001). Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J. Orthop. Res. 19: 2-10. http://dx.doi.org/10.1016/S0736-0266(00)00003-6   Benjamini YHY (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodological) 57: 289-300.   Berken A and Wittinghofer A (2008). Structure and function of Rho-type molecular switches in plants. Plant Physiol. Biochem. 463: 380-393. http://dx.doi.org/10.1016/j.plaphy.2007.12.008 PMid:18272378   Chen J, Baer AE, Paik PY, Yan W, et al. (2002). Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem. Biophys. Res. Commun. 293: 932-938. http://dx.doi.org/10.1016/S0006-291X(02)00314-5   Doita M, Kanatani T, Harada T and Mizuno K (1996). Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21: 235-241. http://dx.doi.org/10.1097/00007632-199601150-00015 PMid:8720410   Fraser RD, Osti OL and Vernon-Roberts B (1993). Intervertebral disc degeneration. Eur. Spine J. 1: 205-213. http://dx.doi.org/10.1007/BF00298361 PMid:20054919   Freeman SN, Ma Y and Cress WD (2008). RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J. Biol. Chem. 283: 2353-2362. http://dx.doi.org/10.1074/jbc.M705986200 PMid:18039672 PMCid:2268526   Freemont AJ, Peacock TE, Goupille P, Hoyland JA, et al. (1997). Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350: 178-181. http://dx.doi.org/10.1016/S0140-6736(97)02135-1   Gautier L, Cope L, Bolstad BM and Irizarry RA (2004). affy - analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307-315. http://dx.doi.org/10.1093/bioinformatics/btg405 PMid:14960456   Gruber HE, Ingram JA, Hoelscher G, Zinchenko N, et al. (2008). Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc. Arthritis Res. Ther. 10: R82. http://dx.doi.org/10.1186/ar2456 PMid:18637190 PMCid:2575628   Gruber HE, Ingram JA, Hoelscher GL, Zinchenko N, et al. (2009). Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc. Arthritis Res. Ther. 11: R47. http://dx.doi.org/10.1186/ar2660 PMid:19327154 PMCid:2688197   Hadjipavlou AG, Tzermiadianos MN, Bogduk N and Zindrick MR (2008). The pathophysiology of disc degeneration: a critical review. J. Bone Joint Surg. Br. 90: 1261-1270. http://dx.doi.org/10.1302/0301-620X.90B10.20910 PMid:18827232   Hiyama A, Sakai D, Tanaka M, Arai F, et al. (2011). The relationship between the Wnt/beta-catenin and TGF-beta/BMP signals in the intervertebral disc cell. J. Cell Physiol. 226: 1139-1148. http://dx.doi.org/10.1002/jcp.22438 PMid:20945354   Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. PMid:19131956   Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264. http://dx.doi.org/10.1093/biostatistics/4.2.249 PMid:12925520   Kaminska B (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy - from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754: 253-262. http://dx.doi.org/10.1016/j.bbapap.2005.08.017 PMid:16198162   Kyriakis JM and Avruch J (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81: 807-869. PMid:11274345   Le Maitre CL, Freemont AJ and Hoyland JA (2004). Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J. Pathol. 204: 47-54. http://dx.doi.org/10.1002/path.1608 PMid:15307137   Le Maitre CL, Freemont AJ and Hoyland JA (2005). The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther. 7: R732-R745. http://dx.doi.org/10.1186/ar1732 PMid:15987475 PMCid:1175026   Le Maitre CL, Freemont AJ and Hoyland JA (2006). Human disc degeneration is associated with increased MMP 7 expression. Biotech. Histochem. 81: 125-131. http://dx.doi.org/10.1080/10520290601005298 PMid:17129995   Le Maitre CL, Freemont AJ and Hoyland JA (2007a). Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther. 9: R45. http://dx.doi.org/10.1186/ar2198 PMid:17498290 PMCid:2206356   Le Maitre CL, Hoyland JA and Freemont AJ (2007b). Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res. Ther. 9: R77. http://dx.doi.org/10.1186/ar2275 PMid:17688691 PMCid:2206382   Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, et al. (2007c). Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem. Soc. Trans. 35: 652-655. http://dx.doi.org/10.1042/BST0350652 PMid:17635113   Luoma K, Riihimaki H, Luukkonen R, Raininko R, et al. (2000). Low back pain in relation to lumbar disc degeneration. Spine 25: 487-492. http://dx.doi.org/10.1097/00007632-200002150-00016 PMid:10707396   Nachemson A, Lewin T, Maroudas A and Freeman MA (1970). In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop. Scand. 41: 589-607. http://dx.doi.org/10.3109/17453677008991550 PMid:5516549   Nagano T, Yonenobu K, Miyamoto S, Tohyama M, et al. (1995). Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine 20: 1972-1978. http://dx.doi.org/10.1097/00007632-199509150-00002 PMid:8578370   Nowak JM, Grzanka A, Zuryn A and Stepien A (2008). The Rho protein family and its role in the cellular cytoskeleton. Postepy Hig. Med. Dosw. 62: 110-117.   Pearson G, Robinson F, Beers GT, Xu BE, et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22: 153-183. http://dx.doi.org/10.1210/er.22.2.153 PMid:11294822   Peng B, Hao J, Hou S, Wu W, et al. (2006). Possible pathogenesis of painful intervertebral disc degeneration. Spine 31: 560-566. http://dx.doi.org/10.1097/01.brs.0000201324.45537.46 PMid:16508552   Pratsinis H and Kletsas D (2008). Growth factors in intervertebral disc homeostasis. Connect. Tissue Res. 49: 273-276. http://dx.doi.org/10.1080/03008200802147951 PMid:18661359   Shannon P, Markiel A, Ozier O, Baliga NS, et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. http://dx.doi.org/10.1101/gr.1239303 PMid:14597658 PMCid:403769   Siripurapu V, Meth J, Kobayashi N and Hamaguchi M (2005). DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J. Mol. Biol. 346: 83-89. http://dx.doi.org/10.1016/j.jmb.2004.11.043 PMid:15663929   Sommer C and Kress M (2004). Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett. 361: 184-187. http://dx.doi.org/10.1016/j.neulet.2003.12.007 PMid:15135924   Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, et al. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39: D561-D568. http://dx.doi.org/10.1093/nar/gkq973 PMid:21045058 PMCid:3013807   Team RDC (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.   Thompson JP, Pearce RH, Schechter MT, Adams ME, et al. (1990). Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15: 411-415. http://dx.doi.org/10.1097/00007632-199005000-00012 PMid:2363069   Thompson JP, Oegema TR Jr and Bradford DS (1991). Stimulation of mature canine intervertebral disc by growth factors. Spine 16: 253-260. http://dx.doi.org/10.1097/00007632-199103000-00001 PMid:2028297   Urban JP and Roberts S (2003). Degeneration of the intervertebral disc. Arthritis Res. Ther. 5: 120-130. http://dx.doi.org/10.1186/ar629 PMid:12723977 PMCid:165040   van der Laan MJ, Dudoit S and Pollard KS (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat. Appl. Genet. Mol. Biol. 3: Article15.   Wuertz K, Vo N, Kletsas D and Boos N (2012). Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur. Cell Mater. 23: 103-119. PMid:22354461
D. X. Wang, Ma, H., Zhang, Y. L., Duan, A. A., Li, W. J., and Li, Z. H., Paeonia (Paeoniaceae) expressed sequence tag-derived microsatellite markers transferred to Paeonia delavayi, vol. 12, pp. 1278-1282, 2013.
Cristancho M and Escobar C (2008). Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix. Genet. Mol. Res. 7: 1186-1192. http://dx.doi.org/10.4238/vol7-4gmr493 PMid:19048497   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochem. Bull. 19: 11-15.   Feng GM (1992). Paeonia lutea (in Chinese). Science Press, Beijing.   Hong DY and Pan KY (1999). Taxonomical history and revision of Paeonia sect. Moutan DC. (Paeoniaceae). Acta Phytotaxonom. Sin. 37: 351-368.   IUCN Red List Categories and Criteria Version 3.1 (2001). Prepared by the IUCN Species Survival Commission, IUCN, Gland and Cambridge.   La Rota M, Kantety RV, Yu JK and Sorrells ME (2005). Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6: 23. http://dx.doi.org/10.1186/1471-2164-6-23 PMid:15720707 PMCid:550658   Li K, Zheng BQ, Wang Y and Bu WS (2012a). Numeric dynamics of natural populations of Paeonia delavayi (Paeoniaceae). Chin. J. Plant Ecol. 36: 522-529. http://dx.doi.org/10.3724/SP.J.1258.2012.00522   Li WJ, Ma H, Li ZH, Wan YM, et al. (2012b). Thirty-four Musa (Musaceae) expressed sequence tag-derived microsatellite markers transferred to Musella lasiocarpa. Genet. Mol. Res. 11: 2094-2098. http://dx.doi.org/10.4238/2012.August.6.13 PMid:22911593   Ma H, Wang L, Wan Y, Li H, et al. (2012). A set of novel microsatellite markers developed for Luculia yunnanensis (Rubiaceae), an endangered plant endemic to Yunnan, China. Int. J. Mol. Sci. 13: 534-539. http://dx.doi.org/10.3390/ijms13010534 PMid:22312269 PMCid:3269703   Pan KY (1979). Flora of China (in Chinese). Science Press, Beijing.   Raymond M and Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.   Rozen S and Skaletsky HJ (2000). Primer 3: Bioinformatics Methods and Protocols. In: Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, New Jersey.
2012
Y. Bao, Wang, J., He, F., Ma, H., and Wang, H., Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust, vol. 11, pp. 3198-3206, 2012.
Afzal SN, Haque MI, Ahmedani MS, Rauf A, et al. (2008). Impact of stripe rust on kernel weight of wheat varieties sown in rainfed areas of Pakistan. Pak. J. Bot. 40: 923-929.   Bariana HS and McIntosh RA (1993). Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476-482. http://dx.doi.org/10.1139/g93-065 PMid:18470001   Cao Z, Deng Z, Wang M, Wang X, et al. (2008). Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. Plant Sci. 174: 544-549. http://dx.doi.org/10.1016/j.plantsci.2008.02.007   Chen Q, Conner RL, Ahmad F, Laroche A, et al. (1998). Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticum and T. aestivum × Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor. Appl. Genet. 97: 1-8. http://dx.doi.org/10.1007/s001220050860   Chen XM (2005). Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant. Pathol. 27: 314-337. http://dx.doi.org/10.1080/07060660509507230   Dreisigacker S (2004). Genetic Diversity in Elite Lines and Land Races of CIMMYT Spring Bread Wheat and Hybrid Performance of Crosses Among Elite Germplasm. Ph.D. thesis, Faculty of Agriculture, University of Hohenheim, Hohenheim.   Friebe B, Jiang J, Raupp WJ, McIntosh RA, et al. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59-87. http://dx.doi.org/10.1007/BF00035277   Fu J, Chen S and Zhang A (1993). Studies of the formation and cytogenetics of octoploid Tritileymus. Acta Genet. Sin. 20: 317-323.   Fu J, Chen S, Zhang A, Hou W, et al. (1996). Cytogenetic studies on the cross progenies between octoploid Tritileymus and Triticum aestivum. Acta Genet. Sin. 23: 24-31.   Fu J, Xu X, Yang Q, Chen S, et al. (1997). Cytogenetic studies on the cross between octoploid Tritileymus and nulllisomic wheat. Acta Genet. Sin. 24: 350-357.   He R, Chang Z, Yang Z, Yuan Z, et al. (2009). Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet. 118: 1173-1180. http://dx.doi.org/10.1007/s00122-009-0971-z PMid:19214392   Hu LJ, Li GR, Zeng ZX, Chang ZJ, et al. (2011). Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica 177: 169-177. http://dx.doi.org/10.1007/s10681-010-0216-x   Jiang J, Friebe B and Gill BS (1994). Recent advances in alien gene transfer in wheat. Euphytica 73: 199-212. http://dx.doi.org/10.1007/BF00036700   Kang Z, Zhao J, Han D, Zhang H et al. (2010). Status of wheat rust research and control in China. Available at [http:// www.globalrust.org/db/attachments/bgriiwc/24/2/07-kang-ca-A4-embargo.pdf].   Kishii M, Wang RR and Tsujimoto H (2003). Characteristics and behaviour of the chromosomes of Leymus mollis and L. racemosus (Triticeae, Poaceae) during mitosis and meiosis. Chromosome Res 11: 741-748. http://dx.doi.org/10.1023/B:CHRO.0000005774.00726.71 PMid:14712860   Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, et al. (2007a). Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114: 1379-1389. http://dx.doi.org/10.1007/s00122-007-0524-2 PMid:17356867   Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, et al. (2007b). A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci. 47: 1995-2003. http://dx.doi.org/10.2135/cropsci2007.01.0038   Li Q, Chen XM, Wang MN and Jing JX (2011). Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theor. Appl. Genet. 122: 189-197. http://dx.doi.org/10.1007/s00122-010-1435-1 PMid:20838759   Luo PG, Luo HY, Chang ZJ, Zhang HY, et al. (2009). Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 118: 1059-1064. http://dx.doi.org/10.1007/s00122-009-0962-0 PMid:19194691   Nasuda S, Friebe B, Busch W, Kynast RG, et al. (1998). Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the compair and related wheat-Ae. comosa translocations in wheat improvement. Theor. Appl. Genet. 96: 780-785. http://dx.doi.org/10.1007/s001220050802   Singh RP, Nelson JC and Sorrells ME (2000). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 40: 1148-1155. http://dx.doi.org/10.2135/cropsci2000.4041148x   Sui XX, Wang MN and Chen XM (2009). Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99: 1209-1215. http://dx.doi.org/10.1094/PHYTO-99-10-1209 PMid:19740035   Wan AM, Chen XM and He ZH (2007). Wheat stripe rust in China. Aust. J. Agr. Res. 58: 605-619. http://dx.doi.org/10.1071/AR06142   Wang XP, Fu J, Zhang XQ, Jing JK, et al. (2000). Molecular cytogenetic study on genome constitutions of octoploid Tritileymus. Acta Bot. Sin. 42: 582-586.   Yu JK, Dake TM, Singh S, Benscher D, et al. (2004). Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47: 805-818. http://dx.doi.org/10.1139/g04-057 PMid:15499395   Zhang P, McIntosh RA, Hoxha S and Dong C (2009). Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor. Appl. Genet. 120: 25-29. http://dx.doi.org/10.1007/s00122-009-1156-5 PMid:19763533   Zhou YC, Zhang XQ, Wang XP, Wu LR, et al. (2001). Chromosomal location and molecular marker of resistance gene to Puccinia striiformis west. in Leymus mollis Trin. Hara. Yi Chuan Xue Bao 28: 864-869. PMid:11582747
H. Ma, Xie, Y. Z., Zhao, J., and Ye, B., Small molecule-enrichment analysis in response to osmotic stimuli in the intervertebral disc, vol. 11, pp. 3668-3675, 2012.
Arora PD, Bibby KJ and McCulloch CA (1994). Slow oscillations of free intracellular calcium ion concentration in human fibroblasts responding to mechanical stretch. J. Cell Physiol. 161: 187-200. http://dx.doi.org/10.1002/jcp.1041610202 PMid:7962103   Bokoch GM (1993). Biology of the Rap proteins, members of the ras superfamily of GTP-binding proteins. Biochem. J. 289: 17-24. PMid:8424755 PMCid:1132124   Boyd LM, Richardson WJ, Chen J, Kraus VB, et al. (2005). Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR. Ann. Biomed. Eng. 33: 1071-1077. http://dx.doi.org/10.1007/s10439-005-5775-y PMid:16133915   Burgering BM and Bos JL (1995). Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem. Sci. 20: 18-22. http://dx.doi.org/10.1016/S0968-0004(00)88944-6   Chen J, Baer AE, Paik PY, Yan W, et al. (2002). Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem. Biophys. Res. Commun. 293: 932-938. http://dx.doi.org/10.1016/S0006-291X(02)00314-5   Cheng CC, Uchiyama Y, Hiyama A, Gajghate S, et al. (2009). PI3K/AKT regulates aggrecan gene expression by modulating Sox9 expression and activity in nucleus pulposus cells of the intervertebral disc. J. Cell Physiol. 221: 668-676. http://dx.doi.org/10.1002/jcp.21904 PMid:19711351 PMCid:3042319   Davis BA, Hogan EM and Boron WF (1992). Role of G proteins in stimulation of Na-H exchange by cell shrinkage. Am. J. Physiol. 262: C533-C536. PMid:1311505   Huang W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. http://dx.doi.org/10.1038/nprot.2008.211 PMid:19131956   Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264. http://dx.doi.org/10.1093/biostatistics/4.2.249 PMid:12925520   Ishihara H, Warensjo K, Roberts S and Urban JP (1997). Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. Am. J. Physiol. 272: C1499-C1506. PMid:9176140   Kanehisa M (2002). The KEGG database. Novartis Found. Symp. 247: 91-101. http://dx.doi.org/10.1002/0470857897.ch8 PMid:12539951   Kang R, Kae H, Ip H, Spiegelman GB, et al. (2002). Evidence for a role for the Dictyostelium Rap1 in cell viability and the response to osmotic stress. J. Cell Sci. 115: 3675-3682. http://dx.doi.org/10.1242/jcs.00039 PMid:12186953   Lamb J, Crawford ED, Peck D, Modell JW, et al. (2006). The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929-1935. http://dx.doi.org/10.1126/science.1132939 PMid:17008526   Lang F, Busch GL, Ritter M, Volkl H, et al. (1998). Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78: 247-306. PMid:9457175   Li S, Duance VC and Blain EJ (2008). Zonal variations in cytoskeletal element organization, mRNA and protein expression in the intervertebral disc. J. Anat. 213: 725-732. http://dx.doi.org/10.1111/j.1469-7580.2008.00998.x PMid:19094188 PMCid:2666141   Noe B, Schliess F, Wettstein M, Heinrich S, et al. (1996). Regulation of taurocholate excretion by a hypo-osmolarity-activated signal transduction pathway in rat liver. Gastroenterology 110: 858-865. http://dx.doi.org/10.1053/gast.1996.v110.pm8608896 PMid:8608896   Pritchard S and Guilak F (2004). The role of F-actin in hypo-osmotically induced cell volume change and calcium signaling in anulus fibrosus cells. Ann. Biomed. Eng. 32: 103-111. http://dx.doi.org/10.1023/B:ABME.0000007795.69001.35 PMid:14964726   Pritchard S, Erickson GR and Guilak F (2002). Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton. Biophys. J. 83: 2502-2510. http://dx.doi.org/10.1016/S0006-3495(02)75261-2   Reuther GW and Der CJ (2000). The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr. Opin. Cell Biol. 12: 157-165. http://dx.doi.org/10.1016/S0955-0674(99)00071-X   Ruhfus B, Tinel H and Kinne RK (1996). Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells. Pflugers Arch. 433: 35-41. http://dx.doi.org/10.1007/s004240050245 PMid:9019728   Smyth GK (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3: Article3.   Stokes IA, Laible JP, Gardner-Morse MG, Costi JJ, et al. (2011). Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression. Ann. Biomed. Eng. 39: 122-131. http://dx.doi.org/10.1007/s10439-010-0140-1 PMid:20711754 PMCid:3275818   Takai Y, Sasaki T and Matozaki T (2001). Small GTP-binding proteins. Physiol. Rev. 81: 153-208. PMid:11152757   Team RDC (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.   Urban JP (2002). The role of the physicochemical environment in determining disc cell behaviour. Biochem. Soc. Trans. 30: 858-864. http://dx.doi.org/10.1042/BST0300858 PMid:12440933   Waldegger S and Lang F (1998). Cell volume and gene expression. J. Membr. Biol. 162: 95-100. http://dx.doi.org/10.1007/s002329900346 PMid:9538502
W. J. Li, Ma, H., Li, Z. H., Wan, Y. M., Liu, X. X., and Zhou, C. L., Thirty-four Musa (Musaceae) expressed sequence tag-derived microsatellite markers transferred to Musella lasiocarpa, vol. 11, pp. 2094-2098, 2012.
Cristancho M and Escobar C (2008). Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix. Genet. Mol. Res. 7: 1186-1192. http://dx.doi.org/10.4238/vol7-4gmr493 PMid:19048497 Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Goudet J (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86: 485-486. Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812 IUCN (2001). IUCN Red List Categories and Criteria, Version3.1. Prepared by the IUCN Species Survival Commission. IUCN, Gland, Switzerland, and Cambridge. La Rota M, Kantety RV, Yu JK and Sorrells ME (2005). Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6: 23. http://dx.doi.org/10.1186/1471-2164-6-23 PMid:15720707 PMCid:550658 Li XY, Shangguan LF, Song CN, Wang C, et al. (2010). Analysis of expressed sequence tags from Prunus mume flower and development of simple sequence repeat markers. BMC Genet. 11: 66. http://dx.doi.org/10.1186/1471-2156-11-66 PMid:20626882 PMCid:2920227 Liu AZ, Kress WJ and Long CL (2003). Customary use and conservational attention to Musella lasiocarpa (Musaceae): a monotypic genus endemic to China. Econ. Bot. 57: 279-281. http://dx.doi.org/10.1663/0013-0001(2003)057[0279:TEOMLM]2.0.CO;2 Long CL, Selena A, Wang XR, Liu YT, et al. (2008). Why Musella lasiocarpa (Musaceae) is used in Southwest China to feed pigs. Econ. Bot. 62: 182-186. http://dx.doi.org/10.1007/s12231-008-9013-z Ma H, Pan QJ, Wang L, Li ZH, et al. (2011). Musella lasiocarpa var. rubribracteata (Musaceae), a new variety from Sichuan, China. Novon 21: 349-353. http://dx.doi.org/10.3417/2010125 Rozen S and Skaletsky HJ (2000). Primer 3: Bioinformatics Methods and Protocols. In: Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, New Jersey, 365-386. Available at [http://frodo.wi.mit.edu/primer3/]. Accessed November 1, 2010. Wu DL and Kress WJ (2000). Flora of China: Musaceae. In: Flagellariaceae through Marantaceae (Wu CY and Raven PH, eds.). Vol. 24. Science Press, Beijing, 314-318. Yang CY, Huang Y and Long CL (2009). Isolation and characterization of 17 polymorphic microsatellite loci for Musella lasiocarpa (Musaceae). HortScience 44: 2041-2042.