Publications

Found 9 results
Filters: Author is E.D. Bao  [Clear All Filters]
2012
Z. J. Liu, Lv, Y. J., Zhang, M., Yue, Z. H., Tang, S., Islam, A., Rehana, B., Bao, E. D., and Hartung, J., Hsp110 expression changes in rat primary myocardial cells exposed to heat stress in vitro, vol. 11, pp. 4728-4738, 2012.
Andreasson C, Fiaux J, Rampelt H, Druffel-Augustin S, et al. (2008a). Insights into the structural dynamics of the Hsp110- Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. U. S. A. 105: 16519- 16524. http://dx.doi.org/10.1073/pnas.0804187105 PMid:18948593 PMCid:2575452   Andreasson C, Fiaux J, Rampelt H, Mayer MP, et al. (2008b). Hsp110 is a nucleotide-activated exchange factor for Hsp70. J. Biol. Chem. 283: 8877-8884. http://dx.doi.org/10.1074/jbc.M710063200 PMid:18218635   Bao E, Sultan KR, Nowak B and Hartung J (2008). Expression and distribution of heat shock proteins in the heart of transported pigs. Cell Stress Chaperones 13: 459-466. http://dx.doi.org/10.1007/s12192-008-0042-4 PMid:18465207 PMCid:2673930   Bao E, Sultan KR, Bernhard N and Hartung J (2009). Expression of heat shock proteins in tissues from young pigs exposed to transport stress. Dtsch. Tierarztl. Wochenschr. 116: 321-325. PMid:19813448   Barisic K and Kopic J (2002). Heat shock proteins and their clinical relevance. Acta Pharm. 52: 71-82.   Benjamin IJ and McMillan DR (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ. Res. 83: 117-132. http://dx.doi.org/10.1161/01.RES.83.2.117 PMid:9686751   Burdon RH (1987). Temperature and animal cell protein synthesis. Symp. Soc. Exp. Biol. 41: 113-133. PMid:3332481   Chen X, Easton D, Oh HJ, Lee-Yoon DS, et al. (1996). The 170 kDa glucose regulated stress protein is a large HSP70-, HSP110-like protein of the endoplasmic reticulum. FEBS Lett. 380: 68-72. http://dx.doi.org/10.1016/0014-5793(96)00011-7   Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, et al. (1993). Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J. Natl. Cancer Inst. 85: 1558-1570. http://dx.doi.org/10.1093/jnci/85.19.1558 PMid:8411230   Cumming DV, Heads RJ, Brand NJ, Yellon DM, et al. (1996). The ability of heat stress and metabolic preconditioning to protect primary rat cardiac myocytes. Basic Res. Cardiol. 91: 79-85. PMid:8660264   DiDomenico BJ, Bugaisky GE and Lindquist S (1982). The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31: 593-603. http://dx.doi.org/10.1016/0092-8674(82)90315-4   Dragovic Z, Broadley SA, Shomura Y, Bracher A, et al. (2006). Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25: 2519-2528. http://dx.doi.org/10.1038/sj.emboj.7601138 PMid:16688212 PMCid:1478182   Easton DP, Kaneko Y and Subjeck JR (2000). The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5: 276-290. http://dx.doi.org/10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2   Evrard L, Vanmuylder N, Dourov N, Glineur R, et al. (1999). Cytochemical identification of HSP110 during early mouse facial development. J. Craniofac. Genet. Dev. Biol. 19: 24-32. PMid:10378145   Gathiram P, Gaffin SL, Brock-Utne JG and Wells MT (1987). Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat. Space Environ. Med. 58: 1071-1074. PMid:3689271   Gathiram P, Wells MT, Raidoo D, Brock-Utne JG, et al. (1988). Portal and systemic plasma lipopolysaccharide concentrations in heat-stressed primates. Circ. Shock 25: 223-230. PMid:3168172   Gisolfi CV, Matthes RD, Kregel KC and Oppliger R (1991). Splanchnic sympathetic nerve activity and circulating catecholamines in the hyperthermic rat. J. Appl. Physiol. 70: 1821-1826. PMid:2055860   Gullo CA and Teoh G (2004). Heat shock proteins: to present or not, that is the question. Immunol. Lett. 94: 1-10. http://dx.doi.org/10.1016/j.imlet.2004.04.002 PMid:15234529   Haagensen L, Jensen DH and Gesser H (2008). Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle. Comp Biochem. Physiol. A Mol. Integr. Physiol. 150: 404-409. http://dx.doi.org/10.1016/j.cbpa.2008.04.604 PMid:18515165   Harrington HM, Dash S, Dharmasiri N and Dharmasiri S (1994). Heat-shock proteins: a search for functions. Aust. J. Plant Physiol. 21: 843-855. http://dx.doi.org/10.1071/PP9940843   Hobbesland A, Kjuus H and Thelle DS (1997). Mortality from cardiovascular diseases and sudden death in ferroalloy plants. Scand. J. Work Environ. Health 23: 334-341. http://dx.doi.org/10.5271/sjweh.229 PMid:9403463   Hylander BL, Chen X, Graf PC and Subjeck JR (2000). The distribution and localization of hsp110 in brain. Brain Res. 869: 49-55. http://dx.doi.org/10.1016/S0006-8993(00)02346-5   Kaarniranta K, Oksala N, Karjalainen HM, Suuronen T, et al. (2002). Neuronal cells show regulatory differences in the hsp70 gene response. Brain Res. Mol. Brain Res. 101: 136-140. http://dx.doi.org/10.1016/S0169-328X(02)00179-1   Kaneko Y, Nishiyama H, Nonoguchi K, Higashitsuji H, et al. (1997). A novel hsp110-related gene, apg-1, that is abundantly expressed in the testis responds to a low temperature heat shock rather than the traditional elevated temperatures. J. Biol. Chem. 272: 2640-2645. http://dx.doi.org/10.1074/jbc.272.5.2640 PMid:9006898   Koelkebeck KW and Odom TW (1995). Laying hen responses to acute heat stress and carbon dioxide supplementation: II. Changes in plasma enzymes, metabolites and electrolytes. Comp. Biochem. Physiol. A Physiol. 112: 119-122.   Lei L, Yu J and Bao E (2009). Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. Br. Poult. Sci. 50: 504-511. http://dx.doi.org/10.1080/00071660903110851 PMid:19735020   Lindquist S and Craig EA (1988). The heat-shock proteins. Annu. Rev. Genet. 22: 631-677. http://dx.doi.org/10.1146/annurev.ge.22.120188.003215 PMid:2853609   Lindquist S and Petersen R (1990). Selective translation and degradation of heat-shock messenger RNAs in Drosophila. Enzyme 44: 147-166. PMid:2133647   Liu Q and Hendrickson WA (2007). Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131: 106-120. http://dx.doi.org/10.1016/j.cell.2007.08.039 PMid:17923091 PMCid:2041797   Locke M, Noble EG, Tanguay RM, Feild MR, et al. (1995). Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am. J. Physiol. 268: C1387-C1394. PMid:7611357   Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, et al. (2010). Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol. Biol. Cell 21: 1439-1448. http://dx.doi.org/10.1091/mbc.E09-09-0779 PMid:20237159 PMCid:2861604   Manjili MH, Wang XY, Chen X, Martin T, et al. (2003). HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J. Immunol. 171: 4054-4061. PMid:14530326   Mitchell MA and Sandercock DA (1995). Increased hyperthermia induced skeletal muscle damage in fast growing broiler chickens? Poultry Sci. 74: 74.   Morris SD, Cumming DV, Latchman DS and Yellon DM (1996). Specific induction of the 70-kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes. A new pharmacological route to stress protein expression? J. Clin. Invest 97: 706-712. http://dx.doi.org/10.1172/JCI118468 PMid:8609226 PMCid:507107   Oh HJ, Chen X and Subjeck JR (1997). Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J. Biol. Chem. 272: 31636-31640. http://dx.doi.org/10.1074/jbc.272.50.31636 PMid:9395504   Polier S, Hartl FU and Bracher A (2010). Interaction of the Hsp110 molecular chaperones from S. cerevisiae with substrate protein. J. Mol. Biol. 401: 696-707. http://dx.doi.org/10.1016/j.jmb.2010.07.004 PMid:20624400