Publications

Found 15 results
Filters: Author is M. Jiang  [Clear All Filters]
2016
X. M. Nie, Cai, S. J., Xie, B., Chen, X. W., Jiang, M., Nie, X. M., Cai, S. J., Xie, B., Chen, X. W., Jiang, M., Nie, X. M., Cai, S. J., Xie, B., Chen, X. W., and Jiang, M., Association between a point mutation at the -743-bp region of the transthyretin (TTR) gene and familial vitreous amyloidosis, vol. 15, p. -, 2016.
X. M. Nie, Cai, S. J., Xie, B., Chen, X. W., Jiang, M., Nie, X. M., Cai, S. J., Xie, B., Chen, X. W., Jiang, M., Nie, X. M., Cai, S. J., Xie, B., Chen, X. W., and Jiang, M., Association between a point mutation at the -743-bp region of the transthyretin (TTR) gene and familial vitreous amyloidosis, vol. 15, p. -, 2016.
X. M. Nie, Cai, S. J., Xie, B., Chen, X. W., Jiang, M., Nie, X. M., Cai, S. J., Xie, B., Chen, X. W., Jiang, M., Nie, X. M., Cai, S. J., Xie, B., Chen, X. W., and Jiang, M., Association between a point mutation at the -743-bp region of the transthyretin (TTR) gene and familial vitreous amyloidosis, vol. 15, p. -, 2016.
L. X. Miao, Jiang, M., Zhang, Y. C., Yang, X. F., Zhang, H. Q., Zhang, Z. F., Wang, Y. Z., Jiang, G. H., Miao, L. X., Jiang, M., Zhang, Y. C., Yang, X. F., Zhang, H. Q., Zhang, Z. F., Wang, Y. Z., and Jiang, G. H., Genomic identification, phylogeny, and expression analysis of MLO genes involved in susceptibility to powdery mildew in Fragaria vesca, vol. 15, p. -, 2016.
L. X. Miao, Jiang, M., Zhang, Y. C., Yang, X. F., Zhang, H. Q., Zhang, Z. F., Wang, Y. Z., Jiang, G. H., Miao, L. X., Jiang, M., Zhang, Y. C., Yang, X. F., Zhang, H. Q., Zhang, Z. F., Wang, Y. Z., and Jiang, G. H., Genomic identification, phylogeny, and expression analysis of MLO genes involved in susceptibility to powdery mildew in Fragaria vesca, vol. 15, p. -, 2016.
M. Jiang, Yun, Q., Niu, G., Gao, Y., Shi, F., Yu, S., Jiang, M., Yun, Q., Niu, G., Gao, Y., Shi, F., and Yu, S., Puerarin prevents inflammation and apoptosis in the neurocytes of a murine Parkinson's disease model, vol. 15, p. -, 2016.
M. Jiang, Yun, Q., Niu, G., Gao, Y., Shi, F., Yu, S., Jiang, M., Yun, Q., Niu, G., Gao, Y., Shi, F., and Yu, S., Puerarin prevents inflammation and apoptosis in the neurocytes of a murine Parkinson's disease model, vol. 15, p. -, 2016.
2012
M. Sun, Jiang, K., Zhang, F., Zhang, D., Shen, A., Jiang, M., Shen, X., and Ma, L., Effects of various salinities on Na+-K+-ATPase, Hsp70 and Hsp90 expression profiles in juvenile mitten crabs, Eriocheir sinensis, vol. 11, pp. 978-986, 2012.
Beck FX, Neuhofer W and Muller E (2000). Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am. J. Physiol. Ren. Physiol. 279: F203-F215. PMid:10919839 Chiang HL, Terlecky SR, Plant CP and Dice JF (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382-385. http://dx.doi.org/10.1126/science.2799391 PMid:2799391 Deane EE, Kelly SP, Luk JC and Woo NY (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar. Biotechnol. 4: 193-205. Ding S, Wang F, Dong S and Gao Q (2009). Effects of salinity fluctuation amplitudes on growth, osmolarity, Na+-K+- ATPase activity and Hsp70 of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Chin. J. Oceanol. Limnol. 27: 723-728. http://dx.doi.org/10.1007/s00343-009-9185-0 Feder ME and Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. http://dx.doi.org/10.1146/annurev.physiol.61.1.243 PMid:10099689 Harris RR and Santos MCF (1993). Sodium uptake and transport (Na+ + K+) ATPase changes following Na+ depletion and low salinity acclimation in the mangrove crab Ucides cordatus (L.). Comp. Biochem. Physiol. 105: 35-42. http://dx.doi.org/10.1016/0300-9629(93)90170-9 Herborg LM, Rushton SP, Clare AS and Bentley MG (2003). Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia 503: 21-28. http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c Holliday CW (1985). Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab, Uca pugnax. J. Exp. Zool. 233: 199-208. http://dx.doi.org/10.1002/jez.1402330206 Kim CH and Hwang SG (1995). The complete larval development of the mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda, Brachyura, Grapsidae) reared in the laboratory and a key to the known zoeae of the Varuninae. Crustaceana 68: 793-812. Mantel LH and Farmer LL (1983). Osmotic and Ionic Regulation. In: The Biology of Crustacea (Bliss DE and Mantel LH, eds.). Academic Press, London, 54-126. Montú M, Anger K and Bakker C (1996). Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgol. Meeresunters 50: 223-252. http://dx.doi.org/10.1007/BF02367153 Neufeld GJ, Holliday CW and Pritchard JB (1980). Salinity adaption of gill Na, K-ATPase in the blue crab, Callinectes sapidus. J. Exp. Zool. 211: 215-224. http://dx.doi.org/10.1002/jez.1402110210 Pan F, Zarate JM, Tremblay GC and Bradley TM (2000). Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J. Exp. Zool. 287: 199-212. http://dx.doi.org/10.1002/1097-010X(20000801)287:3<199::AID-JEZ2>3.0.CO;2-3 Pan LQ and Luan ZH (2005). The effects of salinity on development and Na+/K+-ATPase activity of Marsupenaeus japonicus postlarvae. Acta Hydrobiol. Sin. 29: 699-703. Péqueux A, Gilles R and Marshall WS (1988). NaCl Transport in Gills and Related Structures. In: Advances in Comparative and Environmental Physiology (Greger R, ed.). Springer, Berlin, 1-73. Siebers D, Leweck K, Markus H and Winkler A (1982). Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar. Biol. 69: 37-43. http://dx.doi.org/10.1007/BF00396958 Skou JC and Esmann M (1992). The Na, K-ATPase. J. Bioenerg. Biomembr. 24: 249-261. PMid:1328174 Spees JL, Chang SA, Snyder MJ and Chang ES (2002). Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol. Bull. 203: 331-337. http://dx.doi.org/10.2307/1543575 PMid:12480723 Torres G, Charmantier-Daures M, Chifflet S and Anger K (2007). Effects of long-term exposure to different salinities on the location and activity of Na+-K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147: 460-465. http://dx.doi.org/10.1016/j.cbpa.2007.01.020 Towle DW (1981). Transport-related ATPases as probes of tissue function in three terrestrial crabs of Palau. J. Exp. Zool. 218: 89-95. http://dx.doi.org/10.1002/jez.1402180111 Towle DW (1997). Molecular approaches to understanding salinity adaptation of estuarine animals. Am. Zool. 37: 575-584. Towle DW, Palmer GE and Harris JL III (1976). Role of gill Na+, K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool. 196: 315-322. http://dx.doi.org/10.1002/jez.1401960306 Welch WJ (1993). How cells respond to stress. Sci. Am. 268: 56-64. http://dx.doi.org/10.1038/scientificamerican0593-56 PMid:8097593 Whiteley NM, Scott JL, Breeze SJ and McCann L (2001). Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204: 1003-1011. PMid:11171423
Y. W. Wang, Han, W. T., Jiang, M., Lu, C. X., Li, X. F., Zhang, X., and Li, J. X., A novel mutation of the MFN2 gene in a Chinese family with Charcot-Marie-Tooth disease, vol. 11. pp. 1454-1459, 2012.
Banchs I, Casasnovas C, Montero J, Martinez-Matos JA, et al. (2008). Two Spanish families with Charcot-Marie-Tooth type 2A: clinical, electrophysiological and molecular findings. Neuromuscul. Disord. 18: 974-978.http://dx.doi.org/10.1016/j.nmd.2008.09.006PMid:18996695Barisic N, Claeys KG, Sirotkovic-Skerlev M, Lofgren A, et al. (2008). Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann. Hum. Genet. 72: 416-441.http://dx.doi.org/10.1111/j.1469-1809.2007.00412.xPMid:18215208Cartoni R and Martinou JC (2009). Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp. Neurol. 218: 268-273.http://dx.doi.org/10.1016/j.expneurol.2009.05.003PMid:19427854Chung KW, Kim SB, Park KD, Choi KG, et al. (2006). Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129: 2103-2118.http://dx.doi.org/10.1093/brain/awl174PMid:16835246Engelfried K, Vorgerd M, Hagedorn M, Haas G, et al. (2006). Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med. Genet. 7: 53.http://dx.doi.org/10.1186/1471-2350-7-53PMid:16762064 PMCid:1524942Honda S, Aihara T, Hontani M, Okubo K, et al. (2005). Mutational analysis of action of mitochondrial fusion factor mitofusin-2. J. Cell Sci. 118: 3153-3161.http://dx.doi.org/10.1242/jcs.02449PMid:15985463Kijima K, Numakura C, Izumino H, Umetsu K, et al. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot- Marie-Tooth neuropathy type 2A. Hum. Genet. 116: 23-27.http://dx.doi.org/10.1007/s00439-004-1199-2PMid:15549395Koshiba T, Detmer SA, Kaiser JT, Chen H, et al. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305: 858-862.http://dx.doi.org/10.1126/science.1099793PMid:15297672Nicolaou P, Zamba-Papanicolaou E, Koutsou P, Kleopa KA, et al. (2010). Charcot-Marie-Tooth disease in Cyprus: epidemiological, clinical and genetic characteristics. Neuroepidemiology 35: 171-177.http://dx.doi.org/10.1159/000314351PMid:20571287Rojo M, Legros F, Chateau D and Lombes A (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115: 1663-1674.PMid:11950885Santel A and Fuller MT (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114: 867-874.PMid:11181170Verhoeven K, Claeys KG, Zuchner S, Schroder JM, et al. (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129: 2093-2102.http://dx.doi.org/10.1093/brain/awl126PMid:16714318Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36: 449-451.http://dx.doi.org/10.1038/ng1341PMid:15064763