Publications

Found 9 results
Filters: Author is S.L. Li  [Clear All Filters]
2016
S. L. Li, Ma, X. H., Ji, J. F., Li, H., Liu, W., Lu, F. Z., Wu, S. T., and Zhang, Y., miR-1 association with cell proliferation inhibition and apoptosis in vestibular schwannoma by targeting VEGFA, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESArthurs BJ, Fairbanks RK, Demakas JJ, Lamoreaux WT, et al (2011). A review of treatment modalities for vestibular schwannoma. Neurosurg. Rev. 34: 265-277, discussion 277-279. http://dx.doi.org/10.1007/s10143-011-0307-8 Bartel DP, et al (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5 Carmeliet P, et al (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology 69 (Suppl 3): 4-10. http://dx.doi.org/10.1159/000088478 Cayé-Thomasen P, Werther K, Nalla A, Bøg-Hansen TC, et al (2005). VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol. Neurotol. 26: 98-101. http://dx.doi.org/10.1097/00129492-200501000-00017 Cech TR, Steitz JA, et al (2014). The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157: 77-94. http://dx.doi.org/10.1016/j.cell.2014.03.008 Chen CZ, et al (2005). MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med. 353: 1768-1771. http://dx.doi.org/10.1056/NEJMp058190 Chen H, Zhang X, Zhang Z, Yang T, et al (2014). The role of NF2 gene mutations and pathogenesis-related proteins in sporadic vestibular schwannomas in young individuals. Mol. Cell. Biochem. 392: 145-152. http://dx.doi.org/10.1007/s11010-014-2011-9 Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, et al (2010). MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol. Neurotol. 31: 1455-1462. Dilwali S, Roberts D, Stankovic KM, et al (2015). Interplay between VEGF-A and cMET signaling in human vestibular schwannomas and schwann cells. Cancer Biol. Ther. 16: 170-175. http://dx.doi.org/10.4161/15384047.2014.972765 Han C, Zhou Y, An Q, Li F, et al (2015). MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumour Biol. 36: 6715-6723. http://dx.doi.org/10.1007/s13277-015-3358-6 Jacob A, Lee TX, Neff BA, Miller S, et al (2008). Phosphatidylinositol 3-kinase/AKT pathway activation in human vestibular schwannoma. Otol. Neurotol. 29: 58-68. http://dx.doi.org/10.1097/mao.0b013e31816021f7 Jiang S, Zhao C, Yang X, Li X, et al (2016). miR-1 suppresses the growth of esophageal squamous cell carcinoma in vivo and in vitro through the downregulation of MET, cyclin D1 and CDK4 expression. Int. J. Mol. Med. 38: 113-122. Koutsimpelas D, Bjelopavlovic M, Yetis R, Frauenknecht K, et al (2012). The VEGF/VEGF-R axis in sporadic vestibular schwannomas correlates with irradiation and disease recurrence. ORL J. Otorhinolaryngol. Relat. Spec. 74: 330-338. http://dx.doi.org/10.1159/000346238 Liu R, Li J, Lai Y, Liao Y, et al (2015). Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. Int. J. Biol. Macromol. 81: 491-497. http://dx.doi.org/10.1016/j.ijbiomac.2015.08.016 Mataki H, Enokida H, Chiyomaru T, Mizuno K, et al (2015). Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J. Hum. Genet. 60: 53-61. http://dx.doi.org/10.1038/jhg.2014.111 Nasser MW, Datta J, Nuovo G, Kutay H, et al (2008). Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem. 283: 33394-33405. http://dx.doi.org/10.1074/jbc.M804788200 Osaka E, Yang X, Shen JK, Yang P, et al (2014). MicroRNA-1 (miR-1) inhibits chordoma cell migration and invasion by targeting slug. J. Orthop. Res. 32: 1075-1082. http://dx.doi.org/10.1002/jor.22632 Shi H, Ji Y, Zhang D, Liu Y, et al (2015). MiR-135a inhibits migration and invasion and regulates EMT-related marker genes by targeting KLF8 in lung cancer cells. Biochem. Biophys. Res. Commun. 465: 125-130. http://dx.doi.org/10.1016/j.bbrc.2015.07.145 Taniguchi K, Sakai M, Sugito N, Kumazaki M, et al (2016). PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 7: 18940-18952. Torres-Martin M, Lassaletta L, de Campos JM, Isla A, et al (2013). Global profiling in vestibular schwannomas shows critical deregulation of microRNAs and upregulation in those included in chromosomal region 14q32. PLoS One 8: e65868. http://dx.doi.org/10.1371/journal.pone.0065868 Wang F, Song G, Liu M, Li X, et al (2011). miRNA-1 targets fibronectin1 and suppresses the migration and invasion of the HEp2 laryngeal squamous carcinoma cell line. FEBS Lett. 585: 3263-3269. http://dx.doi.org/10.1016/j.febslet.2011.08.052 Wang X, Huang Y, Zhuang H, Qian Y, et al (2015). Downregulation of microRNA-1 is associated with poor prognosis in hepatocellular carcinoma. Clin. Lab. 61: 1331-1336. Wu YY, Chen YL, Jao YC, Hsieh IS, et al (2014). miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1. Angiogenesis 17: 247-260. http://dx.doi.org/10.1007/s10456-013-9394-1 Xiao H, Zeng J, Li H, Chen K, et al (2015). MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget 6: 13201-13215. http://dx.doi.org/10.18632/oncotarget.3915 Xu K, Zhao YC, et al (2016). MEF2D/Wnt/β-catenin pathway regulates the proliferation of gastric cancer cells and is regulated by microRNA-19. Tumour Biol. 37: 9059-9069. http://dx.doi.org/10.1007/s13277-015-4766-3 Yamamoto N, Nishikawa R, Chiyomaru T, Goto Y, et al (2015). The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. Int. J. Oncol. 47: 325-334. Zhu K, Wang W, et al (2016). Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol. 37: 4373-4382. http://dx.doi.org/10.1007/s13277-015-4187-3     
Y. Wang, Luo, X., Zhang, G. H., Li, S. L., Wang, Y., Luo, X., Zhang, G. H., and Li, S. L., Nuclear magnetic resonance-based study reveals the metabolomics profile of nasopharyngeal carcinoma, vol. 15, p. -, 2016.
Y. Wang, Luo, X., Zhang, G. H., Li, S. L., Wang, Y., Luo, X., Zhang, G. H., and Li, S. L., Nuclear magnetic resonance-based study reveals the metabolomics profile of nasopharyngeal carcinoma, vol. 15, p. -, 2016.
2013
X. X. Sun, Xu, D. D., Lou, B., Li, S. L., Zhan, W., Zhang, Y. R., and Xin, J., Development and characterization of novel microsatellite markers in the rock bream fish Oplegnathus fasciatus, vol. 12, pp. 6462-6465, 2013.
D. D. Xu, Lou, B., Li, S. L., Zhang, Y. R., Xin, J., and Zhan, W., Isolation and characterization of novel microsatellite loci in Nibea albiflora, vol. 12, pp. 6156-6159, 2013.
Y. Z. Li, Wang, L. J., Li, X., Li, S. L., Wang, J. L., Wu, Z. H., Gong, L., and Zhang, X. D., Vascular endothelial growth factor gene polymorphisms contribute to the risk of endometriosis: an updated systematic review and meta-analysis of 14 case-control studies, vol. 12, pp. 1035-1044, 2013.
Altinkaya SO, Ugur M, Ceylaner G, Ozat M, et al. (2011). Vascular endothelial growth factor +405 C/G polymorphism is highly associated with an increased risk of endometriosis in Turkish women. Arch. Gynecol. Obstet. 283: 267-272. http://dx.doi.org/10.1007/s00404-009-1344-1 PMid:20041256   Attar R, Agachan B, Kuran SB, Toptas B, et al. (2010). Genetic variants of vascular endothelial growth factor and risk for the development of endometriosis. In Vivo 24: 297-301. PMid:20555002   Bhanoori M, Arvind BK, Pavankumar Reddy NG, Lakshmi RK, et al. (2005). The vascular endothelial growth factor (VEGF) +405G>C 5'-untranslated region polymorphism and increased risk of endometriosis in South Indian women: a case control study. Hum. Reprod. 20: 1844-1849. http://dx.doi.org/10.1093/humrep/deh852 PMid:15746194   Cosin R, Gilabert-Estelles J, Ramon LA, Espana F, et al. (2009). Vascular endothelial growth factor polymorphisms (-460C/T, +405G/C, and 936C/T) and endometriosis: their influence on vascular endothelial growth factor expression. Fertil. Steril. 92: 1214-1220. http://dx.doi.org/10.1016/j.fertnstert.2008.08.079 PMid:18930211   Ferrara N (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25: 581-611. http://dx.doi.org/10.1210/er.2003-0027 PMid:15294883   Ferrara N, Gerber HP and LeCouter J (2003). The biology of VEGF and its receptors. Nat. Med. 9: 669-676. http://dx.doi.org/10.1038/nm0603-669 PMid:12778165   Fukumura D, Xavier R, Sugiura T, Chen Y, et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715-725. http://dx.doi.org/10.1016/S0092-8674(00)81731-6   Gentilini D, Somigliana E, Vigano P, Vignali M, et al. (2008). The vascular endothelial growth factor +405G>C polymorphism in endometriosis. Hum. Reprod. 23: 211-215. http://dx.doi.org/10.1093/humrep/dem341 PMid:17977866   Girling JE and Rogers PA (2005). Recent advances in endometrial angiogenesis research. Angiogenesis 8: 89-99. http://dx.doi.org/10.1007/s10456-005-9006-9 PMid:16211359   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hsieh YY, Chang CC, Tsai FJ, Yeh LS, et al. (2004). T allele for VEGF gene-460 polymorphism at the 5'-untranslated region: association with a higher susceptibility to endometriosis. J. Reprod. Med. 49: 468-472. PMid:15283056   Ikuhashi Y, Yoshida S, Kennedy S, Zondervan K, et al. (2007). Vascular endothelial growth factor +936 C/T polymorphism is associated with an increased risk of endometriosis in a Japanese population. Acta Obstet. Gynecol. Scand. 86: 1352-1358. http://dx.doi.org/10.1080/00016340701644991 PMid:17963063   Kang S, Zhao J, Liu Q, Zhou R, et al. (2009). Vascular endothelial growth factor gene polymorphisms are associated with the risk of developing adenomyosis. Environ. Mol. Mutagen. 50: 361-366. http://dx.doi.org/10.1002/em.20455 PMid:19197986   Kim JG, Kim JY, Jee BC, Suh CS, et al. (2008). Association between endometriosis and polymorphisms in endostatin and vascular endothelial growth factor and their serum levels in Korean women. Fertil. Steril. 89: 243-245. http://dx.doi.org/10.1016/j.fertnstert.2007.02.023 PMid:17482599   Kim SH, Choi YM, Choung SH, Jun JK, et al. (2005). Vascular endothelial growth factor gene +405 C/G polymorphism is associated with susceptibility to advanced stage endometriosis. Hum. Reprod. 20: 2904-2908. http://dx.doi.org/10.1093/humrep/dei146 PMid:15979997   Lamp M, Saare M, Laisk T, Karro H, et al. (2010). Genetic variations in vascular endothelial growth factor but not in angiotensin I-converting enzyme genes are associated with endometriosis in Estonian women. Eur. J. Obstet. Gynecol. Reprod. Biol. 153: 85-89. http://dx.doi.org/10.1016/j.ejogrb.2010.07.021 PMid:20685027   Liu Q, Li Y, Zhao J, Sun DL, et al. (2009a). Association of polymorphisms -1154G/A and -2578C/A in the vascular endothelial growth factor gene with decreased risk of endometriosis in Chinese women. Hum. Reprod. 24: 2660-2666. http://dx.doi.org/10.1093/humrep/dep208 PMid:19531502   Liu Q, Li Y, Zhao J, Zhou RM, et al. (2009b). Association of single nucleotide polymorphisms in VEGF gene with the risk of endometriosis and adenomyosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 165-169. PMid:19350508   Matalliotakis IM, Katsikis IK and Panidis DK (2005). Adenomyosis: what is the impact on fertility? Curr. Opin. Obstet. Gynecol. 17: 261-264. http://dx.doi.org/10.1097/01.gco.0000169103.85128.c0 PMid:15870560   Missmer SA and Cramer DW (2003). The epidemiology of endometriosis. Obstet. Gynecol. Clin. North Am. 30: 1-19, vii. http://dx.doi.org/10.1016/S0889-8545(02)00050-5   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Signorile PG and Baldi A (2010). Endometriosis: new concepts in the pathogenesis. Int. J. Biochem. Cell Biol. 42: 778-780. http://dx.doi.org/10.1016/j.biocel.2010.03.008 PMid:20230903   Varma R, Rollason T, Gupta JK and Maher ER (2004). Endometriosis and the neoplastic process. Reproduction 127: 293-304. http://dx.doi.org/10.1530/rep.1.00020 PMid:15016949   Vigano P, Parazzini F, Somigliana E and Vercellini P (2004). Endometriosis: epidemiology and aetiological factors. Best. Pract. Res. Clin. Obstet. Gynaecol. 18: 177-200. http://dx.doi.org/10.1016/j.bpobgyn.2004.01.007 PMid:15157637   von Elm E, Altman DG, Egger M, Pocock SJ, et al. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370: 1453-1457. http://dx.doi.org/10.1016/S0140-6736(07)61602-X   Watson CJ, Webb NJ, Bottomley MJ and Brenchley PE (2000). Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12: 1232- 1235. http://dx.doi.org/10.1006/cyto.2000.0692 PMid:10930302   Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin. Exp. Rheumatol 29: 285-292. PMid:21418777   Zhao ZZ, Nyholt DR, Thomas S, Treloar SA, et al. (2008). Polymorphisms in the vascular endothelial growth factor gene and the risk of familial endometriosis. Mol. Hum. Reprod. 14: 531-538. http://dx.doi.org/10.1093/molehr/gan043 PMid:18650217   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093