Publications

Found 7 results
Filters: Author is Z.J. Yin  [Clear All Filters]
2016
J. J. Wang, Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., Yu, S. X., Wang, J. J., Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., and Yu, S. X., Genome-wide identification and expression analysis of CIPK genes in diploid cottons, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank Dr. Cairui Lu for help in data analysis. Research supported by grants from the National High-tech R&D Program (“863” Program) (Grant #2011AA10A102). REFERENCESAlbrecht V, Ritz O, Linder S, Harter K, et al (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051-1063. http://dx.doi.org/10.1093/emboj/20.5.1051 Assmann SM, Wang XQ, et al (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4: 421-428. http://dx.doi.org/10.1016/S1369-5266(00)00195-3 Carra A, Gambino G, Schubert A, et al (2007). A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal. Biochem. 360: 318-320. http://dx.doi.org/10.1016/j.ab.2006.09.022 Chae MJ, Lee JS, Nam MH, Cho K, et al (2007). A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63: 151-169. http://dx.doi.org/10.1007/s11103-006-9079-x Chen L, Ren F, Zhou L, Wang QQ, et al (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63: 6211-6222. http://dx.doi.org/10.1093/jxb/ers273 Chen L, Wang QQ, Zhou L, Ren F, et al (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40: 4759-4767. http://dx.doi.org/10.1007/s11033-013-2572-9 Chen X, Gu Z, Xin D, Hao L, et al (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genomics 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 Chothia C, Gough J, Vogel C, Teichmann SA, et al (2003). Evolution of the protein repertoire. Science 300: 1701-1703. http://dx.doi.org/10.1126/science.1085371 Flagel LE, Wendel JF, et al (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564. http://dx.doi.org/10.1111/j.1469-8137.2009.02923.x Halfter U, Ishitani M, Zhu JK, et al (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. http://dx.doi.org/10.1073/pnas.97.7.3735 Harper JF, et al (2001). Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. http://dx.doi.org/10.1016/S1360-1385(01)02023-4 He DH, Lei ZP, Tang BS, Xing HY, et al (2015). Identification and analysis of the TIFY gene family in Gossypium raimondii. Genet. Mol. Res. 14: 10119-10138. http://dx.doi.org/10.4238/2015.August.21.19 He L, Yang X, Wang L, Zhu L, et al (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 435: 209-215. http://dx.doi.org/10.1016/j.bbrc.2013.04.080 Huang C, Ding S, Zhang H, Du H, et al (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181: 57-64. http://dx.doi.org/10.1016/j.plantsci.2011.03.011 Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, et al (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482. http://dx.doi.org/10.1111/j.1365-3040.2012.02504.x Iqbal K, Azhar FM, Khan IA, et al, Ehsan-Ullah (2011). Variability for Drought Tolerance in Cotton (Gossypium hirsutum) and its Genetic Basis. Int. J. Agric. Biol. 13: 61-66. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, et al (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. http://dx.doi.org/10.1104/pp.103.033068 Lecharny A, Boudet N, Gy I, Aubourg S, et al (2003). Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3: 111-116. http://dx.doi.org/10.1023/A:1022614001371 Li F, Fan G, Wang K, Sun F, et al (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46: 567-572. http://dx.doi.org/10.1038/ng.2987 Li LB, Zhang YR, Liu KC, Ni ZF, et al (2010). Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric. Sci. China 9: 19-30. http://dx.doi.org/10.1016/S1671-2927(09)60063-8 Long M, Rosenberg C, Gilbert W, et al (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499. http://dx.doi.org/10.1073/pnas.92.26.12495 Mahajan S, Sopory SK, Tuteja N, et al (2006). Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J. 273: 907-925. http://dx.doi.org/10.1111/j.1742-4658.2006.05111.x Mortazavi A, Williams BA, McCue K, Schaeffer L, et al (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 Pandey GK, Cheong YH, Kim BG, Grant JJ, et al (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17: 411-421. http://dx.doi.org/10.1038/cr.2007.39 Paterson AH, Wendel JF, Gundlach H, Guo H, et al (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427. http://dx.doi.org/10.1038/nature11798 Roy SJ, Huang W, Wang XJ, Evrard A, et al (2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36: 553-568. http://dx.doi.org/10.1111/j.1365-3040.2012.02595.x Sanders D, Pelloux J, Brownlee C, Harper JF, et al (2002). Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. Schauser L, Wieloch W, Stougaard J, et al (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2 Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, et al (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103: 12935-12940. http://dx.doi.org/10.1073/pnas.0602316103 Tang RJ, Liu H, Bao Y, Lv QD, et al (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74: 367-380. http://dx.doi.org/10.1007/s11103-010-9680-x Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D, et al (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58: 778-790. http://dx.doi.org/10.1111/j.1365-313X.2009.03812.x Wang K, Wang Z, Li F, Ye W, et al (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44: 1098-1103. http://dx.doi.org/10.1038/ng.2371 Wang QQ, Liu F, Chen XS, Ma XJ, et al (2010). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96: 369-376. http://dx.doi.org/10.1016/j.ygeno.2010.08.009 Wei KF, Wang YM, Xie DX, et al (2014). Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol. Breed. 33: 155-172. http://dx.doi.org/10.1007/s11032-013-9941-x Weinl S, Kudla J, et al (2009). The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol. 184: 517-528. http://dx.doi.org/10.1111/j.1469-8137.2009.02938.x Xiang Y, Huang Y, Xiong L, et al (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. http://dx.doi.org/10.1104/pp.107.101295 Xu J, Li HD, Chen LQ, Wang Y, et al (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360. http://dx.doi.org/10.1016/j.cell.2006.06.011 Yin Z, Wang J, Wang D, Fan W, et al (2013). The MAPKKK gene family in Gossypium raimondii: genome-wide identification, classification and expression analysis. Int. J. Mol. Sci. 14: 18740-18757. http://dx.doi.org/10.3390/ijms140918740  
J. J. Wang, Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., Yu, S. X., Wang, J. J., Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., and Yu, S. X., Genome-wide identification and expression analysis of CIPK genes in diploid cottons, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank Dr. Cairui Lu for help in data analysis. Research supported by grants from the National High-tech R&D Program (“863” Program) (Grant #2011AA10A102). REFERENCESAlbrecht V, Ritz O, Linder S, Harter K, et al (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051-1063. http://dx.doi.org/10.1093/emboj/20.5.1051 Assmann SM, Wang XQ, et al (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4: 421-428. http://dx.doi.org/10.1016/S1369-5266(00)00195-3 Carra A, Gambino G, Schubert A, et al (2007). A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal. Biochem. 360: 318-320. http://dx.doi.org/10.1016/j.ab.2006.09.022 Chae MJ, Lee JS, Nam MH, Cho K, et al (2007). A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63: 151-169. http://dx.doi.org/10.1007/s11103-006-9079-x Chen L, Ren F, Zhou L, Wang QQ, et al (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63: 6211-6222. http://dx.doi.org/10.1093/jxb/ers273 Chen L, Wang QQ, Zhou L, Ren F, et al (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40: 4759-4767. http://dx.doi.org/10.1007/s11033-013-2572-9 Chen X, Gu Z, Xin D, Hao L, et al (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genomics 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 Chothia C, Gough J, Vogel C, Teichmann SA, et al (2003). Evolution of the protein repertoire. Science 300: 1701-1703. http://dx.doi.org/10.1126/science.1085371 Flagel LE, Wendel JF, et al (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564. http://dx.doi.org/10.1111/j.1469-8137.2009.02923.x Halfter U, Ishitani M, Zhu JK, et al (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. http://dx.doi.org/10.1073/pnas.97.7.3735 Harper JF, et al (2001). Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. http://dx.doi.org/10.1016/S1360-1385(01)02023-4 He DH, Lei ZP, Tang BS, Xing HY, et al (2015). Identification and analysis of the TIFY gene family in Gossypium raimondii. Genet. Mol. Res. 14: 10119-10138. http://dx.doi.org/10.4238/2015.August.21.19 He L, Yang X, Wang L, Zhu L, et al (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 435: 209-215. http://dx.doi.org/10.1016/j.bbrc.2013.04.080 Huang C, Ding S, Zhang H, Du H, et al (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181: 57-64. http://dx.doi.org/10.1016/j.plantsci.2011.03.011 Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, et al (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482. http://dx.doi.org/10.1111/j.1365-3040.2012.02504.x Iqbal K, Azhar FM, Khan IA, et al, Ehsan-Ullah (2011). Variability for Drought Tolerance in Cotton (Gossypium hirsutum) and its Genetic Basis. Int. J. Agric. Biol. 13: 61-66. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, et al (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. http://dx.doi.org/10.1104/pp.103.033068 Lecharny A, Boudet N, Gy I, Aubourg S, et al (2003). Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3: 111-116. http://dx.doi.org/10.1023/A:1022614001371 Li F, Fan G, Wang K, Sun F, et al (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46: 567-572. http://dx.doi.org/10.1038/ng.2987 Li LB, Zhang YR, Liu KC, Ni ZF, et al (2010). Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric. Sci. China 9: 19-30. http://dx.doi.org/10.1016/S1671-2927(09)60063-8 Long M, Rosenberg C, Gilbert W, et al (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499. http://dx.doi.org/10.1073/pnas.92.26.12495 Mahajan S, Sopory SK, Tuteja N, et al (2006). Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J. 273: 907-925. http://dx.doi.org/10.1111/j.1742-4658.2006.05111.x Mortazavi A, Williams BA, McCue K, Schaeffer L, et al (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 Pandey GK, Cheong YH, Kim BG, Grant JJ, et al (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17: 411-421. http://dx.doi.org/10.1038/cr.2007.39 Paterson AH, Wendel JF, Gundlach H, Guo H, et al (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427. http://dx.doi.org/10.1038/nature11798 Roy SJ, Huang W, Wang XJ, Evrard A, et al (2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36: 553-568. http://dx.doi.org/10.1111/j.1365-3040.2012.02595.x Sanders D, Pelloux J, Brownlee C, Harper JF, et al (2002). Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. Schauser L, Wieloch W, Stougaard J, et al (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2 Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, et al (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103: 12935-12940. http://dx.doi.org/10.1073/pnas.0602316103 Tang RJ, Liu H, Bao Y, Lv QD, et al (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74: 367-380. http://dx.doi.org/10.1007/s11103-010-9680-x Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D, et al (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58: 778-790. http://dx.doi.org/10.1111/j.1365-313X.2009.03812.x Wang K, Wang Z, Li F, Ye W, et al (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44: 1098-1103. http://dx.doi.org/10.1038/ng.2371 Wang QQ, Liu F, Chen XS, Ma XJ, et al (2010). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96: 369-376. http://dx.doi.org/10.1016/j.ygeno.2010.08.009 Wei KF, Wang YM, Xie DX, et al (2014). Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol. Breed. 33: 155-172. http://dx.doi.org/10.1007/s11032-013-9941-x Weinl S, Kudla J, et al (2009). The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol. 184: 517-528. http://dx.doi.org/10.1111/j.1469-8137.2009.02938.x Xiang Y, Huang Y, Xiong L, et al (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. http://dx.doi.org/10.1104/pp.107.101295 Xu J, Li HD, Chen LQ, Wang Y, et al (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360. http://dx.doi.org/10.1016/j.cell.2006.06.011 Yin Z, Wang J, Wang D, Fan W, et al (2013). The MAPKKK gene family in Gossypium raimondii: genome-wide identification, classification and expression analysis. Int. J. Mol. Sci. 14: 18740-18757. http://dx.doi.org/10.3390/ijms140918740  
2010
Z. J. Yin and Shen, F. F., Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum), vol. 9, pp. 1186-1196, 2010.
Axtell MJ (2008). Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim. Biophys. Acta 1779: 725-734. http://dx.doi.org/10.1016/j.bbagrm.2008.02.007 PMid:18342023   Axtell MJ and Bowman JL (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci. 13: 343-349. http://dx.doi.org/10.1016/j.tplants.2008.03.009 PMid:18502167   Axtell MJ, Snyder JA and Bartel DP (2007). Common functions for diverse small RNAs of land plants. Plant Cell 19: 1750-1769. http://dx.doi.org/10.1105/tpc.107.051706 PMid:17601824 PMCid:1955733   Berezikov E, Cuppen E and Plasterk RH(2006). Approaches to microRNA discovery. Nat. Genet. 38 (Suppl): S2-S7. http://dx.doi.org/10.1038/ng1794 PMid:16736019   Carrington JC and Ambros V (2003). Role of microRNAs in plant and animal development. Science 301: 336-338. http://dx.doi.org/10.1126/science.1085242 PMid:12869753   Cui Q, Yu Z, Purisima EO and Wang E (2006). Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2: 46. http://dx.doi.org/10.1038/msb4100089 PMid:16969338 PMCid:1681519   Devor EJ, Peek AS, Lanier W and Samollow PB (2009). Marsupial-specific microRNAs evolved from marsupial-specific transposable elements. Gene 448: 187-191. http://dx.doi.org/10.1016/j.gene.2009.06.019 PMid:19577616 PMCid:2788610   Dryanova A, Zakharov A and Gulick PJ (2008). Data mining for miRNAs and their targets in the Triticeae. Genome 51: 433-443. http://dx.doi.org/10.1139/G08-025 PMid:18521122   Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, et al. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS. One 2: e219. http://dx.doi.org/10.1371/journal.pone.0000219 PMid:17299599 PMCid:1790633   Han Y, Luan F, Zhu H, Shao Y, et al. (2009). Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Sci. China C. Life Sci 52: 1091-1100. http://dx.doi.org/10.1007/s11427-009-0144-y PMid:19937208   Jiang D, Yin C, Yu A, Zhou X, et al. (2006). Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res. 16: 507-518. http://dx.doi.org/10.1038/sj.cr.7310062 PMid:16699546   Jin W, Li N, Zhang B, Wu F, et al. (2008). Identification and verification of microRNA in wheat (Triticum aestivum). J. Plant Res. 121: 351-355. http://dx.doi.org/10.1007/s10265-007-0139-3 PMid:18357413   Jones-Rhoades MW, Bartel DP and Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57: 19-53. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105218 PMid:16669754   Lee RC, Feinbaum RL and Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y   Lu S, Sun YH, Shi R, Clark C, et al. (2005). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186-2203. http://dx.doi.org/10.1105/tpc.105.033456 PMid:15994906 PMCid:1182482   Maher C, Stein L and Ware D (2006). Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 16: 510-519. http://dx.doi.org/10.1101/gr.4680506 PMid:16520461 PMCid:1457037   Mlotshwa S, Yang Z, Kim Y and Chen X (2006). Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol. Biol. 61: 781-793. http://dx.doi.org/10.1007/s11103-006-0049-0 PMid:16897492 PMCid:3574581   Nasaruddin NM, Harikrishna K, Othman RY, Lim SH, et al. (2007). Computational prediction of microRNAs from Oil Palm (Elaeis guineensis Jacq.) expressed sequence tags. Asia Pac. J. Mol. Biol. Biotechnol. 15: 107-113.   Pan X, Zhang B, San Francisco M and Cobb GP (2007). Characterizing viral microRNAs and its application on identifying new microRNAs in viruses. J. Cell Physiol. 211: 10-18. http://dx.doi.org/10.1002/jcp.20920 PMid:17167781   Schwab R, Palatnik JF, Riester M, Schommer C, et al. (2005). Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8: 517-527. http://dx.doi.org/10.1016/j.devcel.2005.01.018 PMid:15809034   Schwarz S, Grande AV, Bujdoso N, Saedler H, et al. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 67: 183-195. http://dx.doi.org/10.1007/s11103-008-9310-z PMid:18278578 PMCid:2295252   Sunkar R, Chinnusamy V, Zhu J and Zhu JK (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12: 301-309. http://dx.doi.org/10.1016/j.tplants.2007.05.001 PMid:17573231   Wei B, Cai T, Zhang R, Li A, et al. (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct. Integr. Genomics 9: 499- 511. http://dx.doi.org/10.1007/s10142-009-0128-9 PMid:19499258   Willmann MR and Poethig RS (2007). Conservation and evolution of miRNA regulatory programs in plant development. Curr. Opin. Plant Biol. 10: 503-511. http://dx.doi.org/10.1016/j.pbi.2007.07.004 PMid:17709279 PMCid:2080797   Yao Y, Guo G, Ni Z, Sunkar R, et al. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8: R96. http://dx.doi.org/10.1186/gb-2007-8-6-r96 PMid:17543110 PMCid:2394755   Yin Z, Li C, Han X and Shen F (2008). Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414: 60-66. http://dx.doi.org/10.1016/j.gene.2008.02.007 PMid:18387754   Zhang BH, Pan XP, Wang QL, Cobb GP, et al. (2005). Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 15: 336-360. http://dx.doi.org/10.1038/sj.cr.7290302 PMid:15916721   Zhang B, Pan X, Wang Q, Cobb GP, et al. (2006a). Computational identification of microRNAs and their targets. Comput. Biol. Chem. 30: 395-407. http://dx.doi.org/10.1016/j.compbiolchem.2006.08.006 PMid:17123865   Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006b). Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63: 246-254. http://dx.doi.org/10.1007/s00018-005-5467-7 PMid:16395542   Zhang B, Wang Q, Wang K, Pan X, et al. (2007). Identification of cotton microRNAs and their targets. Gene 397: 26-37. http://dx.doi.org/10.1016/j.gene.2007.03.020 PMid:17574351