Publications

Found 8 results
Filters: Author is F.J. Li  [Clear All Filters]
2013
Y. H. Zhang, Dai, L. S., Ma, T. H., Wang, S. Z., Guo, J., Li, F. J., Zhang, S. M., Sun, B. X., Liu, D. F., Gao, Y., and Zhang, J. B., Association of T1740C polymorphism of L-FABP with meat quality traits in Junmu No. 1 white swine, vol. 12, pp. 235-241, 2013.
Atshaves BP, McIntosh AM, Lyuksyutova OI, Zipfel W, et al. (2004). Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J. Biol. Chem. 279: 30954-30965. http://dx.doi.org/10.1074/jbc.M313571200 PMid:15155724   Curi RA, Chardulo LA, Mason MC, Arrigoni MD, et al. (2009). Effect of single nucleotide polymorphisms of CAPN1 241 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Genet. 40: 456-462. http://dx.doi.org/10.1111/j.1365-2052.2009.01859.x PMid:19392828   Di Pietro SM and Santomé JA (1996). Presence of two new fatty acid binding proteins in catfish liver. Biochem. Cell Biol. 74: 675-680. http://dx.doi.org/10.1139/o96-073 PMid:9018375   Di Pietro SM, Veerkamp JH and Santomé JA (1999). Isolation, amino acid sequence determination and binding properties of two fatty-acid-binding proteins from axolotl (Ambistoma mexicanum) liver. Evolutionary relationship. Eur. J. Biochem. 259: 127-134. http://dx.doi.org/10.1046/j.1432-1327.1999.00015.x PMid:9914484   Geay Y, Bauchart D, Hocquette JF and Culioli J (2001). Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 41: 1-26. http://dx.doi.org/10.1051/rnd:2001108 PMid:11368241   Gertow K, Bellanda M, Eriksson P, Boquist S, et al. (2004). Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome. J. Clin. Endocrinol. Metab. 89: 392-399. http://dx.doi.org/10.1210/jc.2003-030682 PMid:14715877   Glatz JF and van der Vusse GJ (1996). Cellular fatty acid-binding proteins: their function and physiological significance. Prog. Lipid Res. 35: 243-282. http://dx.doi.org/10.1016/S0163-7827(96)00006-9   Gomez LC, Real SM, Ojeda MS, Gimenez S, et al. (2007). Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina. BMC Med. Genet. 8: 39. http://dx.doi.org/10.1186/1471-2350-8-39 PMid:17594477 PMCid:1925061   Heyer A and Lebret B (2007). Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J. Anim. Sci. 85: 769-778. http://dx.doi.org/10.2527/jas.2006-164 PMid:17296780   Jiang YZ, Li XW and Yang GX (2006). Sequence characterization, tissue-specific expression and polymorphism of the porcine (Sus scrofa) liver-type fatty acid binding protein gene. Yi Chuan Xue Bao 33: 598-606. PMid:16875317   Jurie C, Cassar-Malek I, Bonnet M, Leroux C, et al. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85: 2660-2669. http://dx.doi.org/10.2527/jas.2006-837 PMid:17565066   Kamalakar RB, Chiba LI, Divakala KC, Rodning SP, et al. (2009). Effect of the degree and duration of early dietary amino acid restrictions on subsequent and overall pig performance and physical and sensory characteristics of pork. J. Anim. Sci. 87: 3596-3606. http://dx.doi.org/10.2527/jas.2008-1609 PMid:19574567   Li X, Kim SW, Choi JS, Lee YM, et al. (2010). Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol. Biol. Rep. 37: 3931-3939. http://dx.doi.org/10.1007/s11033-010-0050-1 PMid:20300864   Liu K, Wang G, Zhao SH, Liu B, et al. (2010). Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol. Biol. Rep. 37: 2711-2717. http://dx.doi.org/10.1007/s11033-009-9805-y PMid:19757168   Nemecz G, Jefferson JR and Schroeder F (1991). Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J. Biol. Chem. 266: 17112-17123. PMid:1894608   Richieri GV, Ogata RT and Kleinfeld AM (1994). Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269: 23918-23930. PMid:7929039   Rolf B, Oudenampsen-Krüger E, Börchers T, Faergeman NJ, et al. (1995). Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim. Biophys. Acta 1259: 245-253. http://dx.doi.org/10.1016/0005-2760(95)00170-0   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.   Switonski M, Stachowiak M, Cieslak J, Bartz M, et al. (2010). Genetics of fat tissue accumulation in pigs: a comparative approach. J. Appl. Genet. 51: 153-168. http://dx.doi.org/10.1007/BF03195724 PMid:20453303   Thompson J, Winter N, Terwey D, Bratt J, et al. (1997). The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J. Biol. Chem. 272: 7140-7150. http://dx.doi.org/10.1074/jbc.272.11.7140 PMid:9054409
Q. D. Li, Li, F. J., Liu, X. C., and Jiang, H., KLK1 A1789G gene polymorphism and the risk of coronary artery stenosis in the Chinese population, vol. 12, pp. 1636-1645, 2013.
2012
M. Y. Zhao, Xue, Y., Zhao, Z. Q., Li, F. J., Fan, D. P., Wei, L. L., Sun, X. J., Zhang, X., Wang, X. C., Zhang, Y. X., and Li, J. C., Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population, vol. 11, pp. 3425-3431, 2012.
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Ding S, Li L and Zhu X (2008). Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum. Immunol. 69: 129-133. http://dx.doi.org/10.1016/j.humimm.2007.11.006 PMid:18361939   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Dong H, Jiang DP, Zhou J, et al. (2008). Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit. Care Med. 36: 2274-2280. http://dx.doi.org/10.1097/CCM.0b013e318180b1ed PMid:18596635   Härtel C, Rupp J, Hoegemann A, Bohler A, et al. (2008). 159C>T CD14 genotype - functional effects on innate immune responses in term neonates. Hum. Immunol. 69: 338-443. http://dx.doi.org/10.1016/j.humimm.2008.04.011 PMid:18571004   Hoheisel G, Zheng L, Teschler H, Striz I, et al. (1995). Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 108: 1614-1616. http://dx.doi.org/10.1378/chest.108.6.1614 PMid:7497770   Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, et al. (1998). Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect Dis. 178: 1839-1842. http://dx.doi.org/10.1086/314492 PMid:9815247   Kang HJ, Choi YM, Chae SW, Woo JS, et al. (2006). Polymorphism of the CD14 gene in perennial allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 70: 2081-2085. http://dx.doi.org/10.1016/j.ijporl.2006.07.024 PMid:16950521   Lawn SD, Labeta MO, Arias M, Acheampong JW, et al. (2000). Elevated serum concentrations of soluble CD14 in HIV-and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin. Exp. Immunol. 120: 483-487. http://dx.doi.org/10.1046/j.1365-2249.2000.01246.x PMid:10844527 PMCid:1905566   Liang XH, Cheung W, Heng CK, Liu JJ, et al. (2006). CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet. Genomics 16: 229-236. http://dx.doi.org/10.1097/01.fpc.0000197466.14340.0f PMid:16538169   Liu CP, Li XG, Lou JT, Xue Y, et al. (2009). Association analysis of the PHOX2B gene with Hirschsprung disease in the Han Chinese population of Southeastern China. J. Pediatr. Surg. 44: 1805-1811. http://dx.doi.org/10.1016/j.jpedsurg.2008.12.009 PMid:19735829   Manaster C, Zheng W, Teuber M, Wachter S, et al. (2005). InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26: 11-19. http://dx.doi.org/10.1002/humu.20188 PMid:15931688   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Shams H, Wizel B, Lakey DL, Samten B, et al. (2003). The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63-69. http://dx.doi.org/10.1016/S0928-8244(03)00039-7   Sugawara I, Yamada H, Li C, Mizuno S, et al. (2003a). Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327-336. PMid:12825894   Sugawara I, Yamada H, Mizuno S, Takeda K, et al. (2003b). Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47: 841-847. PMid:14638995   Triantafilou M and Triantafilou K (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304. http://dx.doi.org/10.1016/S1471-4906(02)02233-0   Ulevitch RJ and Tobias PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437-457. http://dx.doi.org/10.1146/annurev.iy.13.040195.002253 PMid:7542010   Vercelli D, Baldini M and Martinez F (2001). The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int. Arch. Allergy Immunol. 124: 20-24. http://dx.doi.org/10.1159/000053658 PMid:11306916   Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155. http://dx.doi.org/10.1038/sj.gene.6364274 PMid:16437124   Zhang G, Goldblatt J and LeSouef PN (2008). Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63: 1411-1417. http://dx.doi.org/10.1111/j.1398-9995.2008.01804.x PMid:18925877
2011
Y. X. Zhang, Xue, Y., Zhao, M. Y., Wang, H. J., Li, J. C., Liu, J. Y., Li, F. J., and Zhou, J. M., Association of TIRAP (MAL) gene polymorhisms with susceptibility to tuberculosis in a Chinese population, vol. 10, pp. 7-15, 2011.
Akira S and Takeda K (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. http://dx.doi.org/10.1038/nri1391 PMid:15229469   Austin CM, Ma X and Graviss EA (2008). Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J. Infect. Dis. 197: 1713-1716. http://dx.doi.org/10.1086/588384 PMid:18419343   Bafica A, Scanga CA, Feng CG, Leifer C, et al. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202: 1715-1724. http://dx.doi.org/10.1084/jem.20051782 PMid:16365150 PMCid:2212963   Barreiro LB, Neyrolles O, Babb CL, Tailleux L, et al. (2006). Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med. 3: e20. http://dx.doi.org/10.1371/journal.pmed.0030020 PMid:16379498 PMCid:1324949   Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265. http://dx.doi.org/10.1093/bioinformatics/bth457 PMid:15297300   Bellamy R, Fry B, Maller J and Daly MJ (2003). Susceptibility to mycobacterial infections: the importance of host genetics. Genes Immun. 4: 4-11. http://dx.doi.org/10.1017/CBO9780511546235   Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516. http://dx.doi.org/10.1093/intimm/dxh052 PMid:14978024   Castiblanco J, Varela DC, Castano-Rodriguez N, Rojas-Villarraga A, et al. (2008). TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect. Genet. Evol. 8: 541-544. http://dx.doi.org/10.1016/j.meegid.2008.03.001 PMid:18417424   Delgado JC, Baena A, Thim S and Goldfeld AE (2002). Ethnic-specific genetic associations with pulmonary tuberculosis. J. Infect. Dis. 186: 1463-1468. http://dx.doi.org/10.1086/344891 PMid:12404162   Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37. http://dx.doi.org/10.1016/j.cellimm.2009.03.008 PMid:19362712 PMCid:2730726   Dye C (2006). Global epidemiology of tuberculosis. Lancet 367: 938-940. http://dx.doi.org/10.1016/S0140-6736(06)68384-0   George J, Kubarenko AV, Rautanen A, Mills TC, et al. (2010). MyD88 adaptor-like D96N is a naturally occurring loss-of-function variant of TIRAP. J. Immunol. 184: 3025-3032. http://dx.doi.org/10.4049/jimmunol.0901156 PMid:20164415   Harding CV and Boom WH (2010). Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat. Rev. Microbiol. 8: 296-307. http://dx.doi.org/10.1038/nrmicro2321 PMid:20234378 PMCid:3037727   Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, et al. (2006). A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis. 194: 1127-1134. http://dx.doi.org/10.1086/507907 PMid:16991088   Jo EK (2008). Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr. Opin. Infect. Dis. 21: 279-286. http://dx.doi.org/10.1097/QCO.0b013e3282f88b5d PMid:18448973   Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell. Microbiol. 9: 1087-1098. http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x PMid:17359235   Khor CC, Chapman SJ, Vannberg FO, Dunne A, et al. (2007). A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39: 523-528. http://dx.doi.org/10.1038/ng1976 PMid:17322885 PMCid:2660299   Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2: e1318. http://dx.doi.org/10.1371/journal.pone.0001318 PMid:18091991 PMCid:2117342   Nagpal K, Plantinga TS, Wong J, Monks BG, et al. (2009). A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284: 25742-25748. http://dx.doi.org/10.1074/jbc.M109.014886 PMid:19509286 PMCid:2757976   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   O'Neill LA and Bowie AG (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7: 353-364. http://dx.doi.org/10.1038/nri2079 PMid:17457343   Ogus AC, Yoldas B, Ozdemir T, Uguz A, et al. (2004). The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23: 219-223. http://dx.doi.org/10.1183/09031936.03.00061703 PMid:14979495   Quesniaux V, Fremond C, Jacobs M, Parida S, et al. (2004). Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 6: 946-959. http://dx.doi.org/10.1016/j.micinf.2004.04.016 PMid:15310472   Rossman M and Oner-Eyuboglu A (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman A, ed.). 3rd edn. McGraww Hill Company, New York, 2483-2501.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Sanchez D, Rojas M, Hernandez I, Radzioch D, et al. (2010). Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cell. Immunol. 260: 128-136. http://dx.doi.org/10.1016/j.cellimm.2009.10.007 PMid:19919859   Schroder NW and Schumann RR (2005). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5: 156-164. PMid:15766650   Thuong NT, Hawn TR, Thwaites GE, Chau TT, et al. (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 8: 422-428. http://dx.doi.org/10.1038/sj.gene.6364405 PMid:17554342   Xue Y, Jin L, Li AZ, Wang HJ, et al. (2010a). Microsatellite polymorphisms in intron 2 of the Toll-like receptor 2 gene and their association with susceptibility to pulmonary tuberculosis in Han Chinese. Clin. Chem. Lab. Med. 48: 785-789. http://dx.doi.org/10.1515/cclm.2010.154 PMid:20298136   Xue Y, Zhao ZQ, Wang HJ, Jin L, et al. (2010b). Toll-like receptors 2 and 4 gene polymorphisms in a southeastern Chinese population with tuberculosis. Int. J. Immunogenet. 37: 135-138. http://dx.doi.org/10.1111/j.1744-313X.2009.00892.x PMid:20002809   Yamamoto M, Sato S, Hemmi H, Sanjo H, et al. (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420: 324-329. http://dx.doi.org/10.1038/nature01182 PMid:12447441
Y. Gao, Zhang, Y. H., Jiang, H., Xiao, S. Q., Wang, S., Ma, Q., Sun, G. J., Li, F. J., Deng, Q., Dai, L. S., Zhao, Z. H., Cui, X. S., Zhang, S. M., Liu, D. F., and Zhang, J. B., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs, vol. 10, pp. 779-791, 2011.
Amri EZ, Bertrand B, Ailhaud G and Grimaldi P (1991). Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456. PMid:1753215 Arber S, Barbayannis FA, Hanser H, Schneider C, et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809. doi:10.1038/31729 PMid:9655397 Ball SG, Shuttleworth CA and Kielty CM (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol. 39: 379-391. doi:10.1016/j.biocel.2006.09.005 Britton CH, Mackey DW, Esser V, Foster DW, et al. (1997). Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 40: 209-211. doi:10.1006/geno.1996.4539 PMid:9070950 Brouns F and van der Vusse GJ (1998). Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79: 117-128. doi:10.1079/BJN19980022 Chmurzynska A (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47: 39-48. doi:10.1007/BF03194597 PMid:16424607 Clement S, Hinz B, Dugina V, Gabbiani G, et al. (2005). The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118: 1395-1404. doi:10.1242/jcs.01732 PMid:15769852 Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, et al. (1992). Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult. Sci. 71: 1911-1920. PMid:1437978 Fu Y, Luo N, Klein RL and Garvey WT (2005). Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379. doi:10.1194/jlr.M400373-JLR200 PMid:15834118 Gardan D, Louveau I and Gondret F (2007). Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148: 14-19. doi:10.1016/j.cbpb.2007.03.017 PMid:17600747 Gregoire FM, Smas CM and Sul HS (1998). Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809. PMid:9674695 Hamilton DN, Miller KD, Ellis M, McKeith FK, et al. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 81: 2206-2212. PMid:12968695 Kadowaki T and Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451. doi:10.1210/er.2005-0005 PMid:15897298 Kadowaki T, Yamauchi T, Kubota N, Hara K, et al. (2007). Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286: 164-176. doi:10.1002/9780470985571.ch15 Malmstrom J, Lindberg H, Lindberg C, Bratt C, et al. (2004). Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol. Cell Proteomics 3: 466-477. doi:10.1074/mcp.M300108-MCP200 Marrube G, Rozen F, Pinto GB, Pacienza N, et al. (2004). New polymorphism of FASN gene in chicken. J. Appl. Genet. 45: 453-455. PMid:15523156 Morris CA, Cullen NG, Glass BC, Hyndman DL, et al. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18: 64-74. doi:10.1007/s00335-006-0102-y PMid:17242864 Muñoz G, Óvilo C, Noguera JL, Sanchez A, et al. (2003). Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34: 234-235. doi:10.1046/j.1365-2052.2003.00987.x PMid:12755829 Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H and Switonski M (2008). Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49: 373-377. doi:10.1007/BF03195636 PMid:19029685 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. doi:10.1093/nar/29.9.e45 Picard B, Lefaucheur L, Berri C and Duclos MJ (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415-431. doi:10.1051/rnd:2002035 Ponsuksili S, Murani E, Walz C, Schwerin M, et al. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol. Genomics 29: 267-279. doi:10.1152/physiolgenomics.00178.2006 PMid:17264241 Price NT, Jackson VN, van der Leij FR, Cameron JM, et al. (2003). Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem. J. 372: 871-879. doi:10.1042/BJ20030086 PMid:12662154    PMCid:1223454 Roy R, Gautier M, Hayes H, Laurent P, et al. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93: 141-142. doi:10.1159/000056970 Roy R, Ordovas L, Zaragoza P, Romero A, et al. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37: 215-218. doi:10.1111/j.1365-2052.2006.01434.x PMid:16734679 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury. Sourdioux M, Brevelet C, Delabrosse Y and Douaire M (1999). Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78: 1651-1657. PMid:10626637 Spiegelman BM, Frank M and Green H (1983). Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258: 10083-10089. PMid:6411703 Tichopad A, Dilger M, Schwarz G and Pfaffl MW (2003). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122. doi:10.1093/nar/gng122 PMCid:219490 van der Leij FR, Takens J, van der Veen AY, Terpstra P, et al. (1997). Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim. Biophys. Acta 1352: 123-128. PMid:9199240 van der Leij FR, Cox KB, Jackson VN, Huijkman NC, et al. (2002). Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277: 26994-27005. doi:10.1074/jbc.M203189200 PMid:12015320 Wang D, Harrison W, Buja LM, Elder FF, et al. (1998). Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 48: 314-323. doi:10.1006/geno.1997.5184 PMid:9545636 Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, et al. (1997). Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett. 409: 401-406. doi:10.1016/S0014-5793(97)00561-9 Yang YA, Morin PJ, Han WF, Chen T, et al. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282: 132-137. doi:10.1016/S0014-4827(02)00023-X Yu GS, Lu YC and Gulick T (1998). Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273: 32901-32909. doi:10.1074/jbc.273.49.32901 PMid:9830040 Zhao S, Wang J, Song X, Zhang X, et al. (2010). Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6. doi:10.1186/1743-7075-7-6 Zhao SH, Recknor J, Lunney JK, Nettleton D, et al. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86: 618-625. doi:10.1016/j.ygeno.2005.08.001 PMid:16216716