Publications

Found 12 results
Filters: Author is H.Y. Ma  [Clear All Filters]
2016
H. Yang, Lu, Q. L., Wu, X. J., Ma, H. Y., Qu, Y. Y., Zhang, D. Z., and Pu, X. M., Association of genetic variations in miR-146a rs2910164 and miR-149 rs11614913 with the development of classic Kaposi sarcoma, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to acknowledge the Natural Science Foundation of China (#81260311) and the People’s Hospital of Xinjiang Uygur Autonomous Region (#20150115) for their support. REFERENCESChen XJ, Zhou TY, Chen M, Li N, et al (2015a). Association of the miRNA146a rs2910164 C>G polymorphism with head and neck cancer risk: a meta-analysis. Asian Pac. J. Cancer Prev. 16: 3871-3874. http://dx.doi.org/10.7314/APJCP.2015.16.9.3871 Chen ZF, Ma LL, Xue HB, et al (2015b). Common polymorphisms of the microRNA genes (miR-146a and miR-196a-2) and gastric cancer risk: an updated meta-analysis. Genet. Mol. Res. 14: 8589-8601. http://dx.doi.org/10.4238/2015.July.31.7 Cui Y, She K, Tian D, Zhang P, et al (2016). miR-146a inhibits proliferation and enhances chemosensitivity in epithelial ovarian cancer via reduction of SOD2. Oncol. Res. 23: 275-282. http://dx.doi.org/10.3727/096504016X14562725373798 Deng S, Wang W, Li X, Zhang P, et al (2015). Common genetic polymorphisms in pre-microRNAs and risk of bladder cancer. World J. Surg. Oncol. 13: 297. http://dx.doi.org/10.1186/s12957-015-0683-6 Friedman-Birnbaum R, Bergman R, Bitterman-Deutsch O, Weltfriend S, et al (1993). Classic and iatrogenic Kaposi’s sarcoma. Histopathological patterns as related to clinical course. Am. J. Dermatopathol. 15: 523-527. http://dx.doi.org/10.1097/00000372-199312000-00001 Gazouli M, Zavos G, Papaconstantinou I, Lukas JC, et al (2004). The interleukin-6-174 promoter polymorphism is associated with a risk of development of Kaposi’s sarcoma in renal transplant recipients. Anticancer Res. 24 (2C): 1311-1314. Gessain A, Duprez R, et al (2005). Spindle cells and their role in Kaposi’s sarcoma. Int. J. Biochem. Cell Biol. 37: 2457-2465. http://dx.doi.org/10.1016/j.biocel.2005.01.018 Guttman-Yassky E, Bar-Chana M, Yukelson A, Linn S, et al (2003). Epidemiology of classic Kaposi’s sarcoma in the Israeli Jewish population between 1960 and 1998. Br. J. Cancer 89: 1657-1660. http://dx.doi.org/10.1038/sj.bjc.6601313 Hashemi M, Moradi N, Ziaee SA, Narouie B, et al (2016). Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population. J. Adv. Res. 7: 491-498. http://dx.doi.org/10.1016/j.jare.2016.03.008 Ji HH, Hong-LuoHuang GL, Yin HX, et al (2015). Association between microRNA-196a2 rs11614913, microRNA-146a rs2910164, and microRNA-423 rs6505162 polymorphisms and esophageal cancer risk: A meta-analysis. Meta Gene 3: 14-25. http://dx.doi.org/10.1016/j.mgene.2014.12.001 Laresche C, Fournier E, Dupond AS, Woronoff AS, et al (2014). Kaposi’s sarcoma: a population-based cancer registry descriptive study of 57 consecutive cases diagnosed between 1977 and 2009. Int. J. Dermatol. 53: e549-e554. http://dx.doi.org/10.1111/ijd.12453 Macfarlane LA, Murphy PR, et al (2010). MicroRNA: biogenesis, function and role in cancer. Curr. Genomics 11: 537-561. http://dx.doi.org/10.2174/138920210793175895 Ouyang X, Zeng Y, Fu B, Wang X, et al (2014). Genotypic analysis of Kaposi’s sarcoma-associated herpesvirus from patients with Kaposi’s sarcoma in Xinjiang, China. Viruses 6: 4800-4810. http://dx.doi.org/10.3390/v6124800 Qi P, Wang L, Zhou B, Yao WJ, et al (2015). Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. Genet. Mol. Res. 14: 6289-6296. http://dx.doi.org/10.4238/2015.June.11.2 Sasaki H, Yoshiike M, Nozawa S, Usuba W, et al (2016). Expression level of urinary microRNA-146a-5p is increased in patients with bladder cancer and decreased in those after transurethral resection. Clin. Genitourin. Cancer 14: e493-e499. http://dx.doi.org/10.1016/j.clgc.2016.04.002 Shi Z, Johnson JJ, Jiang R, Liu Y, et al (2015). Decrease of miR-146a is associated with the aggressiveness of human oral squamous cell carcinoma. Arch. Oral Biol. 60: 1416-1427. http://dx.doi.org/10.1016/j.archoralbio.2015.06.007 Stiller CA, Trama A, Brewster DH, Verne J, RARECARE Working Groupet al (2014). Descriptive epidemiology of Kaposi sarcoma in Europe. Report from the RARECARE project. Cancer Epidemiol. 38: 670-678. http://dx.doi.org/10.1016/j.canep.2014.09.009 van der Kuyl AC, Polstra AM, Weverling GJ, Zorgdrager F, et al (2004). An IL-8 gene promoter polymorphism is associated with the risk of the development of AIDS-related Kaposi’s sarcoma: a case-control study. AIDS 18: 1206-1208. http://dx.doi.org/10.1097/00002030-200405210-00016 Wu XJ, Pu XM, Zhao ZF, Zhao YN, et al (2015). The expression profiles of microRNAs in Kaposi’s sarcoma. Tumour Biol. 36: 437-446. http://dx.doi.org/10.1007/s13277-014-2626-1 Xia ZG, Yin HF, Long Y, Cheng L, et al. (2016). Genetic variant of miR-146a rs2910164 C>G and gastric cancer susceptibility. Oncotarget [Epub ahead of print]. Yin Z, Cui Z, Ren Y, Xia L, et al (2016). Association between polymorphisms in pre-miRNA genes and risk of lung cancer in a Chinese non-smoking female population. Lung Cancer 94: 15-21. http://dx.doi.org/10.1016/j.lungcan.2016.01.013 Zhang L, Gao J, Zhou D, Bao F, et al (2015). Lack of association of two common polymorphisms rs2910164 and rs11614913 with susceptibility to gastric cancer: A meta-analysis. Turk. J. Gastroenterol. 26: 378-385. http://dx.doi.org/10.5152/tjg.2015.6603  
H. Y. Ma, Ma, C. Y., Zhu, J. J., Ren, G. J., Wang, W., Chen, W., Lu, J. X., Ma, L. B., Ma, H. Y., Ma, C. Y., Zhu, J. J., Ren, G. J., Wang, W., Chen, W., Lu, J. X., and Ma, L. B., Characterization of the complete mitochondrial genome and phylogenetic relationships of the three-spot swimming crab (Portunus sanguinolentus), vol. 15, p. -, 2016.
H. Y. Ma, Ma, C. Y., Zhu, J. J., Ren, G. J., Wang, W., Chen, W., Lu, J. X., Ma, L. B., Ma, H. Y., Ma, C. Y., Zhu, J. J., Ren, G. J., Wang, W., Chen, W., Lu, J. X., and Ma, L. B., Characterization of the complete mitochondrial genome and phylogenetic relationships of the three-spot swimming crab (Portunus sanguinolentus), vol. 15, p. -, 2016.
C. Y. Ma, Ma, H. Y., Ren, G. J., Wang, W., Chen, W., Lu, J. X., Zou, X., Ma, L. B., Ma, C. Y., Ma, H. Y., Ren, G. J., Wang, W., Chen, W., Lu, J. X., Zou, X., and Ma, L. B., Characterization of the complete mitochondrial genome of Portunus pelagicus with implications for phylogenomics, vol. 15, p. -, 2016.
C. Y. Ma, Ma, H. Y., Ren, G. J., Wang, W., Chen, W., Lu, J. X., Zou, X., Ma, L. B., Ma, C. Y., Ma, H. Y., Ren, G. J., Wang, W., Chen, W., Lu, J. X., Zou, X., and Ma, L. B., Characterization of the complete mitochondrial genome of Portunus pelagicus with implications for phylogenomics, vol. 15, p. -, 2016.
H. Y. Ma, Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., Ma, L. B., Ma, H. Y., Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., and Ma, L. B., First genetic linkage map for the mud crab (Scylla paramamosain) constructed using microsatellite and AFLP markers, vol. 15, p. -, 2016.
H. Y. Ma, Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., Ma, L. B., Ma, H. Y., Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., and Ma, L. B., First genetic linkage map for the mud crab (Scylla paramamosain) constructed using microsatellite and AFLP markers, vol. 15, p. -, 2016.
W. Wang, Ma, C. Y., Chen, W., Ma, H. Y., Zhang, H., Meng, Y. Y., Ni, Y., Ma, L. B., Wang, W., Ma, C. Y., Chen, W., Ma, H. Y., Zhang, H., Meng, Y. Y., Ni, Y., and Ma, L. B., Optimization of selective breeding through analysis of morphological traits in Chinese sea bass (Lateolabrax maculatus), vol. 15, p. -, 2016.
W. Wang, Ma, C. Y., Chen, W., Ma, H. Y., Zhang, H., Meng, Y. Y., Ni, Y., Ma, L. B., Wang, W., Ma, C. Y., Chen, W., Ma, H. Y., Zhang, H., Meng, Y. Y., Ni, Y., and Ma, L. B., Optimization of selective breeding through analysis of morphological traits in Chinese sea bass (Lateolabrax maculatus), vol. 15, p. -, 2016.
2011
C. Y. Ma, Ma, H. Y., and Ma, L. B., Development and testing of 13 polymorphic microsatellite markers in Larimichthys polyactis (Sciaenidae) using 5' anchored PCR, vol. 10. pp. 1455-1460, 2011.
Chistiakov DA, Hellemans B, Tsigenopoulos CS, Law AS, et al. (2004). Development and linkage relationships for new microsatellite markers of the sea bass (Dicentrarchus labrax L.). Anim. Genet. 35: 53-57. doi:10.1046/j.1365-2052.2003.01076.x PMid:14731231 Dong QF, Liu CW, Guo YS and Liu L (2007). Isolation and characterization of polymorphic microsatellite markers in Epinephelus awoara. J. Fish. China 31: 841-847. Fisher PJ, Gardner RC and Richardson TE (1996). Single locus microsatellites isolated using 5' anchored PCR. Nucleic Acids Res. 24: 4369-4371. doi:10.1093/nar/24.21.4369 PMid:8932400    PMCid:146250 Froese R and Pauly D (2003). Global Capture Production for Larimichthys polyactis. In: FAO Fishery Statistic. FAO, Rome. Li J, Feng F and Yue GH (2006). Twelve novel polymorphic microsatellites in a marine fish species, yellow croaker Larimichthys polyactis. Mol. Ecol. Notes 6: 188-190. doi:10.1111/j.1471-8286.2005.01188.x Li Q and Wan JM (2005). SSRHunter: development of a local searching software for SSR sites. Yi Chuan 27: 808-810. PMid:16257914 Lin LS, Ying YP, Han ZQ, Xiao YS, et al. (2009). AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis. Afr. J. Biotechnol. 8: 2700-2706. Ma C, Chen Q, Zhang Q, Zhuang P, et al. (2010). Genetic variation of Coilia ectenes (Clupeiformes: Engraulidae) revealed by the complete cytochrome b sequences of mitochondrial DNA. J. Exp. Mar. Biol. Ecol. 385: 14-19. doi:10.1016/j.jembe.2010.01.015 Ma HY and Chen SL (2009). Isolation and characterization of 31 polymorphic microsatellite markers in barfin flounder (Verasper moseri) and the cross-species amplification in spotted halibut (Verasper variegatus). Conservat. Genet. 10: 1591-1595. doi:10.1007/s10592-008-9801-0 Ma HY, Bi JZ, Shao CW, Chen Y, et al. (2009). Development of 40 microsatellite markers in spotted halibut (Verasper variegatus) and the cross-species amplification in barfin flounder (Verasper moseri). Anim. Genet. 40: 576-578. doi:10.1111/j.1365-2052.2009.01869.x PMid:19392825 Meng ZN, Zhuang ZM, Jin XS, Tang QS, et al. (2003). Genetic diversity in small yellow croaker (Pseudosciaena polyactis) by RAPD analysis. Biodivers. Sci. 11: 197-203. Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. doi:10.2307/2409177 Sakamoto T, Danzmann RG, Gharbi K and Howard P (2000). A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex2 specific differences in recombination rates. Genetics 155: 1331-1-345. Sun Y, Sun H, Zhao Y, Qian G, et al. (2009). Isolation and characterization of microsatellite loci in the freshwater crab Sinopotamon yangtsekiense and cross-species amplification in related taxa (Decapoda: Brachyura). J. Crustacean Biol. 29: 413-418. doi:10.1651/08-3115.1 Van Oosterhou C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. doi:10.1111/j.1471-8286.2004.00684.x Wang XL, Li DP, Meng XY and Qiu XM (2009). A panel of polymorphic EST-derived microsatellite loci for the small yellow croaker (Larimichthys polyactis). Conservat. Genet. 10: 1629-1631. doi:10.1007/s10592-009-9816-1 Weber JL and May PE (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396. PMid:2916582    PMCid:1715443 Xiao Y, Zhang Y, Gao T, Yanagimoto T, et al. (2009). Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fish 85: 303-314. doi:10.1007/s10641-009-9497-0 Yeh FC, Boyle T, Ye Z and Xiyan JM (1999). POPGENE version 1.31: Microsoft window-bases freeware for population genetic analysis. University of Alberta and the Centre for International Forestry Research, Edmonton.