Publications

Found 8 results
Filters: Author is A. Saeed  [Clear All Filters]
2012
M. Imran, Shakeel, A., Azhar, F. M., Farooq, J., Saleem, M. F., Saeed, A., Nazeer, W., Riaz, M., Naeem, M., and Javaid, A., Combining ability analysis for within-boll yield components in upland cotton (Gossypium hirsutum L.), vol. 11, pp. 2790-2800, 2012.
Ahmad I, Ali A, Zubair M and Khan IA (2001). Mode of gene action controlling seed cotton yield and various components in Gossypium hirsutum L. Pak. J. Agr. Sci. 38: 19-21.   Ahmad M, Khan NU, Muhammad F, Khan SA, et al. (2011). Genetic potential and heritibility studies for some polygenic traits in cotton (Gossypium hirsutum L.). Pak. J. Bot. 43: 1713-1718.   Ahuja SL and Dhayal LS (2007). Combining ability estimates for yield and fiber quality traits in 4 x 13 line x tester crosses of Gossypium hirsutum. Euphytica 153: 87-98. http://dx.doi.org/10.1007/s10681-006-9244-y   Anonymous (2009-2010). Economic Survey of Pakistan. Ministry of Food and Agriculture, Division (Economic Wing) Government of Pakistan, Islamabad.   Basal H, Unay A, Canavar O and Yavas I (2009). Combining ability for fibre quality parameters and within-boll yield components in intraspecific and iterspecific cotton populations. Spanish J. Agr. Res. 7: 364-374.   Braden C, Smith CW and Thaxton P (2003). Combining Ability for Near Extra Long Fibres in Upland Cotton. Beltwide Cotton Conferences, January 6-10, Nashville.   Coyle GG and Smith CW (1997). Combining ability for within-boll yield component in cotton, G. hirsutum L. Crop Sci. 37: 1118-1122. http://dx.doi.org/10.2135/cropsci1997.0011183X003700040014x   Culp TW and Harrell DC (1975). Influence of lint percentage, boll size, and seed size on lint yield of upland cotton with high fiber strength. Crop Sci. 15: 741-746. http://dx.doi.org/10.2135/cropsci1975.0011183X001500060001x   Debaby ASE, Kasseem MM, Awaad MM and Hemaida GM (1997). Heterosis and combining ability in inter-varietal crosses of Egyptian cotton in different locations. Egyptian J. Agr. Res. 75: 753-767.   Ferguson D and Turner JH (1971). Influence of unfilled cotton seed upon emergence and vigour. Crop Sci. 11: 713-715. http://dx.doi.org/10.2135/cropsci1971.0011183X001100050033x   Green CC and Culp TW (1990). Simultaneous improvement of yield, fiber quality, and yarn strength in upland cotton. Crop Sci. 30: 66-69. http://dx.doi.org/10.2135/cropsci1990.0011183X003000010015x   Griffing B (1956). Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol. Sci. 9: 463-493.   Harrell DC and Culp TW (1976). Effects of yield components on lint yield of upland cotton with high fiber strength. Crop Sci. 16: 205-208. http://dx.doi.org/10.2135/cropsci1976.0011183X001600020010x   Inam-ul-Haq and Azhar FM (2004). Genetic basis of varietal differences for seed cotton yield and its components in Hirsutum spp. Int. J. Agr. Biol. 6: 904-907.   Iqbal M, Khan RSA, Hayat K and Khan NI (2005). Genetic variation and combining ability for yield and fiber traits among cotton F1 hybrid population. J. Biol. Sci. 6: 678-683.   Khadi BM, Santhy V and Yadav MS (2010). Cotton: An introduction. In: Cotton Biotechnological Advances (Zehr UB, ed.). Spring Verlag, Heidelberg, 1-14.   Khan NU, Hassan G, Marwat KB, Farhatullah MB, et al. (2009). Diallel analysis of some quantitative traits in Gossypium hirsutum L. Pak. J. Bot. 41: 3009-3022.   Kiani G, Nematzadeh GA, Kazemitabar SK and Alishah O (2007). Combining ability in cotton cultivars for agronomic traits. Int. J. Agr. Biol. 9: 521-522.   Kumaresan D, Senthilkumar P and Ganesan J (1999). Combining ability studies for quantitative traits in cotton (Gossypium hirsutum L.). Madras Agr. J. 18: 430-432.   Laxman S (2010). Diallel analysis for combining ability for seed cotton yield and its components in desi cotton (Gossypium arborium L.). J. Cotton Res. Dev. 24: 26-28.   Liu YX and Han XM (1998). Research on combining ability and inheritance of 12 economic characters in upland cotton. China Cotton 25: 9-11.   Mohamed GIA, Abd-El-Halem SHM and Ibrahim EMA (2009). A genetic analysis of yield and its components of Egyptian cotton (Gossypium barbadense L.) under divergent environments. American-Eurasian J. Agr. Environ. Sci. 5: 05-13.   Neelima S, Reddy VC and Reedy AN (2004). Combining ability studies for yield and yield components in American cotton (G. hirsutum L.). Ann. Agr. Biol. Res. 9: 1-6.   Patel AD, Patel UG and Kumar V (2009). Diallel analysis for combining ability for seed cotton yield and its component traits in upland cotton. J. Cotton Res. Dev. 23: 222-225.   Patel UG, Patel JC, Patel PG, Vadodaria KV, et al. (1997). Combining ability analysis for seed cotton yield and mean fibre length in upland cotton (Gossypium hirsutum). Indian J. Genet. Plant Breed. 57: 315-318.   Ragsdale PI and Smith CW (2007). Germplasm potential for trait improvement in upland Cotton: diallel analysis of within-boll seed yield components. Crop Sci. 47: 1013-1017. http://dx.doi.org/10.2135/cropsci2006.09.0627   Rahman H, Malik SA and Saleem M (2005). Inheritance of seed physical traits in upland cotton under different temperature regimes. Spanish J. Agr. Res. 3: 225-232.   Rathore KS, Sunilkumar G, Cantrell RG, Hague S, et al. (2008). Transgenic Sugar, Tuber and Fiber Crops. In: Compendium of Transgenic Crop Plants (Kole C and Hall TC, eds.). Black well, Oxford, 545-554.   Schwartz BM and Smith CW (2008). Genetic gain in yield potential of upland cotton under varying plant densities. Crop Sci. 48: 601-605. http://dx.doi.org/10.2135/cropsci2007.01.0049   Singh M, Singh TH and Chahal GS (1985). Genetic analysis of some seed quality characters in upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 71: 126-128. http://dx.doi.org/10.1007/BF00278264   Smith CW and Coyle GG (1997). Association of fiber quality parameters and within-boll yield components in upland cotton. Crop Sci. 37: 1775-1779. http://dx.doi.org/10.2135/cropsci1997.0011183X003700060019x   Sprague GF and Tatum LA (1942). General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34: 923-932. http://dx.doi.org/10.2134/agronj1942.00021962003400100008x   Steel RGD, Torrie JH and Dicky DA (1997). Principles and Procedures of Statistics - A Biometrical Approach. 3rd edn. McGraw Hill Book International Co., Singapore, 204-227.   Tomer SK and Singh SP (1996). Genetics of yield and yield components over locations in desi cotton Gossypium arboretum L. Genet. Plant Breed. 56: 89-93.   Ulloa M (2006). Heritability and correlations of agronomic and fibre traits in an okra-leaf upland cotton population. Crop Sci. 4: 1508-1514. http://dx.doi.org/10.2135/cropsci2005.08-0271   Waldia RS, More BR and Jatasra DS (1980). Line x tester analysis for yield and economic attributes in Gossypium hirsutum L. Indian J. Agric. Sci. 50: 745-747. (Pl. Br. Abst. 52: 5883; 1982).   Worley S, Culp TW and Harrell DC (1974). The relative contributions of yield components to lint yield of upland cotton, Gossypium hirsutum L. Euphytica 23: 399-403. http://dx.doi.org/10.1007/BF00035885   Zhang JF, Deng Z, Sun JZ and Liu JL (1994). Heterosis and combining ability in interspecific crosses between Gossypium hirsutum and G. barbadense. Acta Agron. Sin. 13: 9-14.
2011
A. Saeed, Shahid, M. Q., Anjum, S. A., Khan, A. A., Shakeel, A., Saleem, M. F., and Saeed, N., Genetic analysis of NaCl tolerance in tomato, vol. 10, pp. 1754-1776, 2011.
Allen JA, Chambers JL and Stine M (1994). Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol. 14: 843-853. PMid:14967653 Azhar FM and McNeilly T (1988). The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) moench seedlings. Plant Breed. 101: 114-121. http://dx.doi.org/10.1111/j.1439-0523.1988.tb00275.x Azhar FM, Hussain SS and Mahmood I (1998). Heterotic response of F1 sorghum hybrids to NaCl salinity at early stage of plant growth. Pak. J. Sci. Ind. Res. 41: 50-53. Comstock RE and Robinson HF (1952). Estimation of Average Dominance of Genes in Heterosis. Iowa State College Press, Ames. Cruz CD and Regazzi AJ (1994). Modelos Biométricos Aplicados ao Melhoramento Genético. Universidade Federal de Viçosa, Imprensa Universitária, Viçosa. Ekanayake IJ, Toole JCO, Garrity DP and Masajo DTM (1985). Inheritance of root charaters and their relation to drought resistance in rice. Crop Sci. 25: 927-932. http://dx.doi.org/10.2135/cropsci1985.0011183X002500060007x Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. Chapman and Hall, London. Freeman GF (1919). The heredity of quantitative characters in wheat. Genetics 4: 1-93. PMid:17245919    PMCid:1200453 Gain P, Mannan MA, Pal PS, Hossain MM, et al. (2004). Effect of salinity on some yield attributes of rice. Pak. J. Biol. Sci. 7: 760-762. http://dx.doi.org/10.3923/pjbs.2004.760.762 Griffing B (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9: 463-493. Hassan AA, Nassar HH, Barkat MA and Tolba MS (1999). Tomato breeding for salinity tolerance. III. Genetics of tolerance. Egypt. J. Hort. 26: 391-403. Hayman BI (1954). The theory and analysis of diallel crosses. Genetics 39: 789-809. PMid:17247520    PMCid:1209689 Hollington PA (1998). Technological Breakthroughs in Screening/Breeding Wheat Varieties for Salt Tolerance. In: National Conference on “Salinity Management in Agriculture” CSSRI, Karnal. Jinks JL (1954). The analysis of continuous variation in diallel crosses of Nicotiana rustica varieties. Genetics 39: 767-788. PMid:17247519    PMCid:1209688 Kearsey MJ and Jinks JL (1968). A general method of detecting additive, dominance and epistasic variation for biometrical traits. I. Theory. Heredity 23: 403-409. http://dx.doi.org/10.1038/hdy.1968.52 PMid:5250122 Kempthorne O (1957). An Introduction to Genetical Statistics. John Wiley and Sons Inc., New York. Kenga R, Alabi SO and Gupta SC (2004). Combining ability studies in tropical sorghum (Sorghum bicolor (L.) Moench). Field Crop Res. 88: 251-260. http://dx.doi.org/10.1016/j.fcr.2004.01.002 MarÃlia CF, Sérvio TC, Valter RO, Clibas V, et al. (2001). Combining ability for nodulation in common bean (Phaseolus vulgaris L.) genotypes from Andean and Middle American gene pools. Euphytica 118: 265-270. http://dx.doi.org/10.1023/A:1017560118666 Moeljopawiro S and Ikehashi H (1981). Inheritance of salt tolerance in rice. Euphytica 30: 291-300. http://dx.doi.org/10.1007/BF00033990 Munns R (2002). The Impact of Salinity Stress. Available at [http://www.plantstress.com/articles/salinity_i/salinity_ ihtml]. Accessed November 17, 2004. Paul NK, Johnston TD and Eagles F (1987). Heterosis and inbreeding depression in forage rape (Brassica napus L.). Euphytica 36: 345-349. http://dx.doi.org/10.1007/BF00730681 Qureshi RH, Aslam M, Nawaz S and Mehmood T (1990). Saline Agriculture Research in Pakistan. In: Proceedings of the Indo-Pak Workshop on Soil Salinity and Water Management, PARC, Isalamabad, 409-423. Qureshi RH (1993). Alternative Strategies for Tackling the Soil Salinity Problem. Department of Soil Science, University of Agriculture, Faisalabad. Ratanadilok N, Maracarian A and Schmilzel C (1978). Salt tolerance in grain sorghum. Agron. Abstr. 70: 160. Rausch T, Kirsch M, Low R, Lehr A, et al. (1996). Salt stress responses of higher plants: the role of proton pumps and Na+/ H+ antiporters. J. Plant Physiol. 148: 425-433. Roy NC, Jettopujov VN and Solanik NM (2002). Combining ability for some agronomic characters in alfalfa (Medicago sativa L). Pak. J. Agr. Res. 17: 346-350. Saranga Y, Cahaner A, Zamir D, Marani A, et al. (1992). Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in interspecific populations. Theor. Appl. Genet. 84: 390-396. http://dx.doi.org/10.1007/BF00229498 Sarwar G, Ashraf MY and Naeem M (2003). Genetic variability of some primitive bread wheat varieties to salt tolerance. Pak. J. Bot. 35: 771-777. Shaaban MM, El-Fouly MM, Zanaty EL, El-Nour AAA, et al. (2004). Halophytes and foliar fertilization as a useful technique for growing processing tomatoes in the saline affected soils. Pak. J. Biol. Sci. 7: 503-507. http://dx.doi.org/10.3923/pjbs.2004.503.507 Steel RGD, Torrie JH and Dickay DA (1997). Principles and Procedures of Statistics, a Biometrical Approach. McGraw Hill Book Co., New York. Waheed A (1996). Development of Salt Tolerance in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris medic). Ph.D. thesis, Institute of Pure and Applied Biology, Department of Botany, Bahuddin Zakaryai University, Multan. Winicov I (1998). New molecular approaches to improving salt tolerance in crop plants. Ann. Bot. 82: 703-710. http://dx.doi.org/10.1006/anbo.1998.0731 Wynne JC, Enery DA and Rice PH (1970). Combining ability estimation in Arachis hypogaea L. II. Field performance of F1 hybrids. Crop Sci. 10: 713-715. http://dx.doi.org/10.2135/cropsci1970.0011183X001000060036x
A. Saeed, Saleem, M. F., Zakria, M., Anjum, S. A., Shakeel, A., and Saeed, N., Genetic variability of NaCl tolerance in tomato, vol. 10, pp. 1371-1382, 2011.
Akinci S, Yilmaz K and Akinci IE (2004). Response of tomato (Lycopersicon esculentum Mill.) to salinity in the early growth stages for agricultural cultivation in saline environments. J. Environ. Biol. 25: 351-357. PMid:15847348 Al-Khatib M, McNeilly T and Collins JC (1994). The genetic basis of salt tolerance in lucerne (Medicago sativa L.). J. Genet. Breed. 48: 169-174. Ali Z, Khan AS and Asad MA (2002). Salt tolerance in bread wheat: genetic variation and heritability for growth and ion relation. Asian J. Plant Sci. 1: 420-422. doi:10.3923/ajps.2002.420.422 Ashraf M and McNeilly T (1988). Variability in salt tolerance of nine spring wheat cultivars. J. Agron. Crop Sci. 160: 14-21. doi:10.1111/j.1439-037X.1988.tb01160.x Aslam M, Qureshi RH and Ahmad N (1993). A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150: 99-107. doi:10.1007/BF00779180 Azhar FM and McNeilly T (1989). The response of four sorghum accessions/cultivars to salinity during plant development. J. Agron. Crop Sci. 163: 33-43. doi:10.1111/j.1439-037X.1989.tb00734.x Azhar FM and Ahmad R (2000). Variation and heritability of salinity tolerance in upland cotton at early stage of plant development. Pak. J. Biol. Sci. 3: 1991-1993. doi:10.3923/pjbs.2000.1991.1993 Azhar FM and McNeilly T (2001). Compartmentation of Na+ and Cl- ions in different parts of Sorghum bicolor (L.) moench during plant development. Pak. J. Bot. 33: 101-107. Bhatti MA and Azhar FM (2002). Salt tolerance of nine Gossypium hirsutum L. varieties to NaCl salinity at early stage of plant development. Int. J. Agric. Biol. 4: 544-546. Bottger M (1978). Levels of endogenous indole-3-acetic acid and abscisic acid during the course of formation of roots. Z. Pflanzenphysiol 86: 283-286. Cramer GR, Alberico GJ and Schmidt C (1994). Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust. J. Plant Physiol. 21: 675-692. doi:10.1071/PP9940675 Falconer DS and MacKay TFC (1996). Introduction to Quantitative Genetics. Chapman and Hall, London. Farooq S and Azam F (2001). Co-existence of salt and drought tolerance in Triticeae. Hereditas 135: 205-210. doi:10.1111/j.1601-5223.2001.00205.x Flowers TJ and Yeo AR (1995). Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22: 875-884. doi:10.1071/PP9950875 Forster BP (2001). Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120: 317-328. doi:10.1023/A:1017592618298 Furr JR and Ream CL (1969). Breeding Citrus Rootstocks for Salt Tolerance. In: Proceedings of the First International Citrus Symposium (Chapman HD, ed.). University of California, Riverside, 373-380. Gain P, Mannan MA, Pal PS, Hossain MM, et al. (2004). Effect of salinity on some yield attributes of rice. Pak. J. Biol. Sci. 7: 760-762. doi:10.3923/pjbs.2004.760.762 Gottschalk W (1981). Mutation: higher plants. Prog. Bot. 43: 139-152. Hassan AA, Nassar HH, Barkat MA and Tolba MS (1999). Tomato breeding for salinity tolerance. III. Genetics of tolerance. Egyptian J. Hort. 26: 391-403. Hoagland DR and Arnon DI (1950). The Water-Culture Method for Growing Plants Without Soil. Circular, University of California, College of Agriculture, Agricultural Experiment Station, California, 347. Hollington PA (1998). Technological Breakthroughs in Screening/Breeding Wheat Varieties for Salt Tolerance. In: National Conference on “Salinity Management in Agriculture”. CSSRI, Karnal. Khan AS, Asad MA and Ali Z (2003). Assessment of genetic variability for NaCl tolerance in wheat. Pak. J. Agric. Sci. 40: 33-36. Larkin PJ and Scowcroft WR (1981). Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197-214. doi:10.1007/BF02342540 Leim ASN, Hendriks A, Kraal H and Loenen M (1985). Effect of deicing salt on roadside grasses and herbs. Plant Soil 84: 299-310. doi:10.1007/BF02275470 Levitt J (1980). Responses of Plants to Environmental Stresses, Water, Radiation, Salt and other Stresses. Academic Press Inc., New York. Maas EV (1986). Salt tolerance of plants. Appl. Agric. Res. 1: 12-26. Maiti RK, Amaya LED, Cardona SI, Dimas AMO, et al. (1996). Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity. J. Plant Physiol. 148: 741-744. Mano Y and Takeda K (2001). Genetic resources of salt tolerance at germination and the seedling stage in wheat. Jpn. J. Crop Sci. 70: 215-220. McNeilly T (1990). Selection and breeding for salinity tolerance in crop species: a case for optimism? Acta Ecol. 11: 595-610. Munns R (2002). The impact of salinity stress. Available at [http:www.plantstress.com/articles/salinity_i/salinity_ihtm]. Accessed November 17, 2004. Munns R, Schachtman DP and Condon AG (1995). The significance of a two-phase growth response to salinity in wheat and barley. Aust. J. Plant Physiol. 22: 561-569. doi:10.1071/PP9950561 Muralia S and Sastry EVD (1994). Stability analysis in wheat (Triticum aestivum) for seedling emergence and establishment characters at different salinity levels. Indian J. Genet. Plant Breed. 54: 351-356. Noor E, Azhar FM and Khan AA (2001). Differences in responses of Gossypium hirsutum L. varieties to NaCl salinity at seedling stage. Int. J. Agric. Biol. 3: 345-347. Noori SAS and McNeilly T (1999). Assessment of variability in salt tolerance in diploid Aegilops ssp. J. Genet. Breed. 53: 183-188. Noori SAS and McNeilly T (2000). Assessment of variability in salt tolerance based on seedling growth in Triticum durum Desf. Genet. Res. Crop Evol. 47: 285-291. doi:10.1023/A:1008749312148 Okusanya OT and Ungar IA (1984). The growth and mineral composition of three species of Spergularia as affected by salinity and nutrients at high salinity. Am. J. Bot. 71: 439-447. doi:10.2307/2443501 Qureshi RH (1993). Alternative Strategies for Tackling the Soil Salinity Problem. Department of Soil Science, University of Agricultutre, Faisalabad, 117. Qureshi RH, Aslam M, Nawaz S and Mehmood T (1990). Saline Agriculture Research in Pakistan. Proceedings Indo-Pak Workshop on Soil Salinity and Water Management. PARC, Islamabad. Rausch T, Kirsch M, Low R, Lehr A, et al. (1996). Salt stress responses of higher plants: the role of proton pumps and Na+/ H+ antiporters. J. Plant Physiol. 148: 425-433. Rodriguez HG, Roberts J, Jordan WR and Drew MC (1997). Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol. 113: 881-893. PMid:12223650    PMCid:158208 Rosielle AA and Hamblin J (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943-946. doi:10.2135/cropsci1981.0011183X002100060033x Rush DW and Epstein E (1981). Comparative studies on the sodium, potassium and chloride relations of a wild halophytic and a domestic salt sensitive tomato species. Plant Physiol. 68: 1308-1313. doi:10.1104/pp.68.6.1308 PMid:16662098    PMCid:426093 Salam A, Hollington PA, Gorham J, Wyn Jones RG, et al. (1999). Physiological genetics of salt tolerance in (Triticum aestivum L): performance of wheat varieties, inbred lines and reciprocal F1 hybrids under saline conditions. J. Agron. Crop Sci. 183: 145-156. doi:10.1046/j.1439-037x.1999.00361.x Saqib M, Akhtar J, Qureshi RH and Aslam M (2002). Performance of two wheat (Triticum aestivum) genotypes in response to waterlogging at different growth stages under non-saline and saline soil conditions. Pak. J. Agric. Sci. 39: 171-176. Sarwar G, Ashraf MY and Naeem M (2003). Genetic variability of some primitive bread wheat varieties to salt tolerance. Pak. J. Bot. 35: 771-777. Sastry EVD and Sharma H (2000). Effect of temperature and salinity on the germination seedling growth in wheat (Triticum aestivum L.). Indian J. Agri. Sci. 70: 117-118. Serrano R, Culianz-Macia FA and Moreno V (1998). Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci. Hortic. 78: 261-269. doi:10.1016/S0304-4238(98)00196-4 Shaaban MM, El-Fouly MM, El-Zanaty and El-Nour AAA (2004). Halophytes and foliar fertilization as a useful technique for growing processing tomatoes in the saline affected soils. Pak. J. Biol. Sci. 7: 504-507. Shannon MC and McCreight C (1984). Salt tolerance of lettuce introductions. HortScience 19: 673-675. Shannon MC and Grieve CM (1999). Tolerance of vegetable crops to salinity. Sci. Hortic. 78: 5-38. doi:10.1016/S0304-4238(98)00189-7 Shannon MC, Rhoades JD, Draper JH, Scardaci SC, et al. (1998). Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci. 38: 394-398. doi:10.2135/cropsci1998.0011183X003800020021x SPSS (1994). Repeated Analysis of Variance. In: SPSS Advanced Statistics Release, 107-143. Tal M and Shannon MC (1983). Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to high salinity. Aust. J. Plant Physiol. 10: 109-117. doi:10.1071/PP9830109 Vespasiani C, Arias C and Taleisnik E (1995). Effect of salinity in the early stages of tomato fruit growth. Acta Phytopathol. Entomol. Hung. 30: 21-25. Xing X, Zheng G, Deng Z, Xu Z, et al. (2002). Comparative study of drought and salt resistance of different Tricacae genotypes. Acta Bot. Boreali-Occidentalia Sin. 22: 1122-1135. Zhao GQ, Ma BL and Ren CZ (2007). Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci. 47: 123-131. doi:10.2135/cropsci2006.06.0371
M. T. H. Shahid, Khan, F. A., Saeed, A., and Fareed, I., Variability of red rot-resistant somaclones of sugarcane genotype S97US297 assessed by RAPD and SSR, vol. 10, pp. 1831-1849, 2011.
Aftab F and Iqbal J (1999). Plant regeneration from protoplasts derived from cell suspension of adventive somatic embryos in sugarcane (Saccharum spp. hybrid cv. CoL-54 and cv. CP-43/33). Plant Cell Tissue Organ Cult. 56: 155-162. http://dx.doi.org/10.1023/A:1006296320725 Ali A, Naz S, Siddiqui FA and Iqbal J (2008). Rapid clonal multiplication of sugarcane (Saccharum officinarum) through callogenesis and organogenesis. Pak. J. Bot. 40: 123-138. Anbalagan S, Kalamani A and Sakila M (2000). In vitro propagation of sugarcane: nature of callus, direct regeneration, regeneration through callus and morphological variations. Res. Crops 1: 138-140. Anonymous (2008). Pakistan Economic Survey. Government of Pakistan. Available at [http://www.pro-pakistan.com/2009/06/11/download-economic-survey-of-pakistan-2008-09/]. Accessed February 26, 2010. Ather A, Khan S, Rehman A and Nazir M (2009). Optimization of the protocols for callus induction, regeneration and acclimatization of sugarcane cv. Thatta-10. Pak. J. Bot. 41: 815-820. Badawy OM, Nasr MI and Alhendawi RA (2008). Response of sugarcane (Saccharum species hybrid) genotypes to embryogenic callus induction and in vitro salt stress. Sugar Tech. 10: 243-247. http://dx.doi.org/10.1007/s12355-008-0043-8 Baksha R, Alam R, Karim MZ, Paul SK, et al. (2002). In vitro shoot tip culture of sugar-cane (Saccharum officinarum) variety Isd 28. Biotechnology 1: 67-72. http://dx.doi.org/10.3923/biotech.2002.67.72 Brisibe EA, Miyake H, Taniguchi T and Maeda E (1994). Regulation of somatic embryogenesis in long-term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol. 126: 301-307. http://dx.doi.org/10.1111/j.1469-8137.1994.tb03949.x Cordeiro GM, Casu R, McIntyre CL, Manners JM, et al. (2001). Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and Sorghum. Plant Sci. 160: 1115-1123. http://dx.doi.org/10.1016/S0168-9452(01)00365-X Devarumath RM, Doule RB, Kawar PG, Naikebawane SB, et al. (2007). Field performance and RAPD analysis to evaluate genetic fidelity of tissue culture raised plants vis-à-vis conventional setts derived plants of sugarcane. Sugar Tech. 9: 17-22. http://dx.doi.org/10.1007/BF02956908 Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Falco MC, Mendes BMJ, Tulmann NA and Gloria BA (1996). Histological characterization of in vitro regeneration of Saccharum sp. Res. Bras. Fisiol. Veg. 8: 93-97. Gill NK, Raman G and Gosal SS (2002). Somatic embryogenesis and plant regeneration in some commercial cultivars of sugarcane. Crop Improve. 29: 28-34. Hanafy MS and Lobna M Abou-Setta (2007). Saponins production in shoot and callus cultures of Gypsophila paniculata J. Appl. Sci. Res. 3: 1045-1049. Hu X, Wang J, Lu P and Zhang H (2009). Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J. Genet. Genomics 36: 491-500. http://dx.doi.org/10.1016/S1673-8527(08)60139-3 Hussnain Z and Afghan S (2006). Impact of Major Cane Diseases on Sugarcane Yield and Sugar Recovery. Annual Report, Shakarganj Sugar Research Institute, Jhang. Jain R, Srivastava S, Singh J and Gupta PS (2005). Assessment of genetic purity of micropropagated plants of sugarcane by isozyme and RAPD analysis. Sugar Tech. 7: 15-19. http://dx.doi.org/10.1007/BF02942522 Jannoo N, Forget L and Dookun A (2001). Contribution of Microsatellites to Sugarcane Breeding Program in Mauritius. International Society of Sugar Cane Technologists, Proceedings of the XXIV Congress, Brisbane, 637-639. Javed MA, Chaudhry BA, Tanvir MK, Shahid MTH, et al. (2001). Development and screening of sugarcane somaclones against diseases. Pak. Sugar J. 16: 36-39. Khadiga GAE, Rasheid SM and Khalafalla MM (2009). Effect of plant growth regulators on callus induction and plant regeneration in tuber segment culture of potato (Solanum tuberosum L.) cultivar Diamant. Afr. J. Biotech. 8: 2529-2534. Khan IA, Dahot MU, Seema N, Bibi S, et al. (2008). Genetic variability in plantlets derived from callus culture in sugarcane. Pak. J. Bot. 40: 547-564. Khan IA, Dahot MU, Seema N, Yasmin S, et al. (2009). Genetic variability in sugarcane plantlets developed through in vitro mutagenesis. Pak. J. Bot. 41: 153-166. Khatun MM, Ali MH and Desamero NV (2003). Effect of genotype and culture media on callus formation and plant regeneration from mature seed scutella culture in rice. Plant Tissue Cult. 13: 99-107. Lal M, Singh RK, Srivastava S, Singh N, et al. (2008). RAPD marker based analysis of micropropagated plantlets of sugarcane for early evaluation of genetic fidelity. Sugar Tech. 10: 99-103. http://dx.doi.org/10.1007/s12355-008-0017-x Malik KB (1990). Sugarcane Production Problems and Research Strategies for Yield Improvement. Dept. Agric., Punjab. Mannan SKA and Amin MN (1999). Callus and shoot formation from leaf sheath of sugarcane (Saccharum officinarum L.) in vitro. Indian Sugar 49: 187-192. Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, et al. (2008). Sugarcane functional genomics: gene discovery for agronomic trait development. Int. J. Plant Genomics 2008: 458732. http://dx.doi.org/10.1155/2008/458732 PMid:18273390    PMCid:2216073 Michael P (2007). Micropropagation of elite sugarcane planting materials from callus culture in vitro. J. Proc. Royal Soc. New South Wales 140: 79-86. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x Nair NV, Nair S, Sreenivasan TV and Mohan M (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Gen. Res. Crop Evaluat. 46: 73-79. http://dx.doi.org/10.1023/A:1008696808645 Nair NV, Selvi A, Sreenivasan TV and Pushpalatha KN (2002). Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127: 219-225. http://dx.doi.org/10.1023/A:1020234428681 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Oropeza M, Guevara P, Garcia E and Ramirez JL (1995). Identification of sugarcane (Saccharum spp.) somaclonal variants resistant to surgarcane mosaic virus via RAPD markers. Plant Mol. Biol. Rep. 13: 182-191. http://dx.doi.org/10.1007/BF02668790 Powell W, Machray GC and Provan J (1996). Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222. Prajapati BS, Patel CL, Patel SR and Patel AA (2000). Regeneration of tissue culture plantlets through callus culture in sugarcane cultivar. Ind. J. Genet. Plant Breed. 60: 255-257. Rahman S, Hussain M, Shahid MTH, Tanvir MK, et al. (2003). Response of different sugarcane genotypes to tissue culture. Pak. Sugar J. 18: 27-32. Rohlf FJ (1993). NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.0. Exeter software: Setauket, New York. Sabaz AK, Rashid H, Fayyaz CM, Chaudhry Z, et al. (2008). Rapid micropropagation of three elite sugarcane (Saccharum officinarum L.) varieties by shoot tip culture. Afr. J. Biotech. 7: 2174-2180. Saini N, Saini ML and Jain RK (2004). Large-scale production, field performance and RAPD analysis of micropropagated sugarcane plants. Indian J. Genet. Plant Breed. 64: 102-107. Shaheen MS and Mirza MS (1989). In vitro production of plants from sugarcane tissue. Pak. J. Agri. Sci. 26: 302-312. Shahid MTH, Shaheen MS and Mirza MS (1990). Studies on Comparative Response of Sugarcane Varieties to Callus Production. Proceedings of National Saminar on Sugarcane Production, Ayub Agricultural Research Institute, Faisalabad, 89-95. Shahid MTH, Shaheen MS and Mirza MS (1994). Response of sugarcane varieties to plant differentiation from leaf and pith tissues. Pak. J. Agri. Res. 15: 137-143. Siddiqui SH, Khatri A, Khan AL, Javed MA, et al. (1994). In-vitro cultures: a source of genetic variability and an aid to sugarcane improvement. Pak. J. Agric. Res. 15: 127-133. Sneath PHA and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco. Snyman SJ, Hucket BI, Both FC and Watt MP (2001). A comparison of direct and indirect somatic embryogenesis, the production of transgenic sugarcane. S. Afr. J. Bot. 62: 105-107. Suprasanna P, Desai NS, Sapna G and Bapat VA (2006). Monitoring genetic fidelity in plants derived through direct somatic embryogenesis in sugarcane by RAPD analysis. J. New Seeds 8: 1-9. http://dx.doi.org/10.1300/J153v08n03_01 Suprasanna P, Desai NS, Choudhari RS and Bapat VA (2007). RAPD markers for assessing culture induced variation in somatic embryogenesis derived plants of sugarcane. Sugar Tech. 9: 284-289. Taylor PWJ, Geijskes JR, Ko HL, Fraser TA, et al. (1995). Sensitivity of random amplified polymorphic DNA analysis to detect genetic variation in sugarcane during tissue culture. Theor. Appl. Genet. 90: 1169-1173. http://dx.doi.org/10.1007/BF00222939 Wang LX, Cheng XZ, Wang SH, Liu CY, et al. (2009). Transferability of SSR markers from adzuki bean into mungbean. Acta Agro. Sin. 35: 816-820. http://dx.doi.org/10.3724/SP.J.1006.2009.00816 Wen MC and Kinsella JE (1991). Somatic embryogenesis and plantlet regeneration of Theobroma cacao. Food Biotech. 5: 119-138. http://dx.doi.org/10.1080/08905439109549797
2010
S. Tabasum, Khan, F. A., Nawaz, S., Iqbal, M. Z., and Saeed, A., DNA profiling of sugarcane genotypes using randomly amplified polymorphic DNA, vol. 9, pp. 471-483, 2010.
Arceneaux G (1967). Cultivated sugarcane of the world and their botanical derivation. Proc. Int. Soc. Sugar Cane Technol. 12: 844-845.   Brandes EW (1958). Origin, Classification and Characteristics. In: Sugarcane (Saccharum officinarum L.) (Artschwager E and Brandes EW, eds.). U.S. Department of Agriculture Handbook, Washington D.C., 1-35.   Brar DS (2002). Molecular Marker Assisted Breeding. In: Molecular Techniques in Crop Improvement (Jain SM, Brar DS and Ahloowalia BS, eds.). Kluwer Academic Publishers, Netherlands, 55-83.   Burner DM, Pan YB and Webster RD (1997). Genetic diversity of North American and Old World Saccharum assessed by RAPD analysis. Genet. Res. Crop Evol. 44: 235-240. http://dx.doi.org/10.1023/A:1008631731506   Daniels J and Roach BT (1987). Taxonomy and Evolution in Sugarcane. In: Sugarcane Improvement Through Breeding (Heinz DJ, ed.). Elsevier Press, Amsterdam, 7-84. PMid:3507886   Deren CW (1995). Genetic base of U.S. mainland sugarcane. Crop Sci. 35: 1195-1199. http://dx.doi.org/10.2135/cropsci1995.0011183X003500040047x   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Ellsworth DL, Rittenhouse KD and Honeycutt RL (1993). Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14: 214-217. PMid:8431284   Glaszmann JC, Fautret A, Noyer JL, Feldmann P, et al. (1989). Biochemical genetic markers in sugarcane. Theor. Appl. Genet. 78: 537-543. http://dx.doi.org/10.1007/BF00290839   Glaszmann JC, Lu YK and Lanaud C (1990). Variation of nuclear ribosomal DNA in sugarcane. J. Genet. Breed. 44: 191-198.   Grassl CO (1977). The origin of the sugar producing cultivars of Saccharum. Sugarcane Breed. Newsl. 39: 8-33.   Grivet L and Arruda P (2002). Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol. 5: 122-127. http://dx.doi.org/10.1016/S1369-5266(02)00234-0   Harvey M and Botha FC (1996). Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica 89: 257-265. http://dx.doi.org/10.1007/BF00034614   Kresovich S, Williams JGK, McFerson JR, Routman EJ, et al. (1992). Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190-196. http://dx.doi.org/10.1007/BF00222859   Lu YH, D'Hont A, Walker DIT, Rao PS, et al. (1994). Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78: 7-18.   Micheli MR, Bova R, Pascale E and D'Ambrosio E (1994). Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Res. 22: 1921-1922. http://dx.doi.org/10.1093/nar/22.10.1921 PMid:8208620 PMCid:308096   Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 PMid:1682921 PMCid:52814   Nair NV, Nair S, Sreenivasan TV and Mohan M (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet. Res. Crop Evol. 46: 73-79. http://dx.doi.org/10.1023/A:1008696808645   Nair NV, Selvi A, Sreenivasan TV and Pushpalatha KN (2002). Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127: 219-225. http://dx.doi.org/10.1023/A:1020234428681   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Pan YB, Miller J, Schnell R, Richard E, et al. (2003). Application of Microsatellite and RAPD Fingerprints in the Florida Sugarcane Variety Program. In: Plant Animal Genome VX Conference, Houma, Abstract 43.   Pan YB, Burner DM, Legendre BL, Grisham MP, et al. (2005). An assessment of the genetic diversity within a collection of Saccharum spontaneum L. with RAPD-PCR. Genet. Res. Crop Evol. 51: 895-903. http://dx.doi.org/10.1007/s10722-005-1933-1   Pillay M and Kenny ST (1995). Anomalies in direct pair-wise comparisons of RAPD fragments for genetic analysis. Biotechniques 19: 694-6, 698. PMid:8588897   Reeves J, Law J, Donin P, Koebner MR, et al. (1999). Changes over time in the genetic diversity of UK cereal crops. Available at National Institute of Agricultural Botany [http://apps3.fao.org/wiews/Prague/Paper12.htm], Cambridge.   Skroch P and Nienhuis J (1995). Impact of scoring error and reproducibility RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet. 91: 1086-1091. http://dx.doi.org/10.1007/BF00223923   Sobral BWS and Honeycut RJ (1993). High output genetic mapping of polyploids using PCR-generated markers. Theor. Appl. Genet. 86: 105-112. http://dx.doi.org/10.1007/BF00223814   Sreenivasan TV, Ahloowalia BS and Heinz DJ (1987). Cytogenetics. In: Sugarcane Improvement Through Breeding (Heinz DJ, ed.). Elsevier, Amsterdam, 211-253.   Swanson T (1996). Global values of biological diversity: the public interest in the conservation of plant genetic resources for agriculture. Plant Genet. Res. Newsl. 105: 1-7.   Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, et al. (1994). Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor. Appl. Genet. 88: 973-980. http://dx.doi.org/10.1007/BF00220804   Weir BS (1990). Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sinauer Associates Inc., Sunderland.   Wolfe AD and Liston A (1998). Contribution of PCR-based Methods to Plant Systematics and Evolutionary Biology. In: Molecular Systematics of Plants II: DNA Sequencing (Soltis DE, Soltis PS and Doyle JJ, eds.). Kluwer, Boston, 43-86. http://dx.doi.org/10.1007/978-1-4615-5419-6_2   Yang X and Quiros C (1993). Identification and classification of celery cultivars with RAPD markers. Theor. Appl. Genet. 86: 205-212. http://dx.doi.org/10.1007/BF00222080
S. Nawaz, Khan, F. A., Tabasum, S., Iqbal, M. Z., and Saeed, A., Genetic studies of “noble cane” for identification and exploitation of genetic markers, vol. 9, pp. 1011-1022, 2010.
Callen DF, Thompson AD, Shen Y, Phillips HA et al. (1993). Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 52: 922-927. PMid:8488841 PMCid:1682051   Cordeiro GM, Pan YB and Henry RJ (2003). Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci. 165: 181-189. http://dx.doi.org/10.1016/S0168-9452(03)00157-2   D'Hont A, Rao PS, Feldmann P, Grivet L, et al. (1995). Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor. Appl. Genet. 91: 320-326. http://dx.doi.org/10.1007/BF00220894   D'Hont A, Grivet L, Feldmann P, Glaszmann JC, et al. (1996). Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250: 405-413. http://dx.doi.org/10.1007/BF02174028 PMid:8602157   Daniels J and Roach BT (1987). Taxonomy and Evolution. In: Sugarcane Improvement Through Breeding (Heinz DJ, ed.). Elsevier Press, Amsterdam, 7-84. PMid:3507886   Dayanandan S, Rajora OP and Bawa KS (1998). Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor. Appl. Genet. 96: 950-956. http://dx.doi.org/10.1007/s001220050825   Devey ME, Bell JC, Smith DN, Neale DB, et al. (1996). A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor. Appl. Genet. 92: 673-679. http://dx.doi.org/10.1007/BF00226088   Germplasm Resources Information Network (GRIN) (2004). Germplasm Resources Information Network. Available at [http://www.ars-grin.gov/cgi-bin/npgs/html/genform.pl]. Accessed June 1, 2004.   Glaszmann JC, Fautret A, Noyer JL, Feldmann P et al. (1989). Biochemical genetic markers in sugarcane. Theor. Appl. Genet. 78: 537-543. http://dx.doi.org/10.1007/BF00290839   Ha S, Moore PH, Heinz D, Kato S, et al. (1999). Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol. Biol. 39: 1165-1173. http://dx.doi.org/10.1023/A:1006133804170 PMid:10380803   Hoisington D, Khairallah M and González D (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. CIMMYT, Mexico.   Hu G (1993). DNA polymerase-catalyzed addition of non templated extra nucleotides to the 3' end of a DNA fragment. DNA Cell Biol. 12: 763-770. http://dx.doi.org/10.1089/dna.1993.12.763 PMid:8397833   Lu YH, D'Hont A, Paulet F, Grivet L, et al. (1994). Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78: 217-226. http://dx.doi.org/10.1007/BF00027520   McIntyre L, Aitken K, Berding N, Casu R, et al (2001). Identification of DNA Markers Linked to Agronomic Traits in Sugarcane in Australia. In: International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress, Brisbane, Australia, 17-21 September. Australian Society of Sugar Cane Technologists, Brisbane, 560-562.   Ming R, Liu SC, Moore PH, Irvine JE, et al. (2001). QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res. 11: 2075-2084. http://dx.doi.org/10.1101/gr.198801 PMid:11731498 PMCid:311218   Naidu KM and Sreenivasan TV (1987). Conservation of the Sugarcane Germplasm. In: Corpersucar International Sugarcane Breeding Workshop. Copersucar, São Paulo, 33-53.   Nair NV, Nair S, Sreenivasan TV and Mohan M (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet. Res. Crop Evol. 46: 73-79. http://dx.doi.org/10.1023/A:1008696808645   Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292. http://dx.doi.org/10.1086/282771   Paglia GP, Olivieri AM and Morgante M (1998). Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.). Mol. Gen. Genet. 258: 466-478. http://dx.doi.org/10.1007/s004380050757 PMid:9669328   Pan YB, Cordeiro GM, Henry RJ and Schnell RJ (2002). Microsatellite Fingerprints of Louisiana Sugarcane Varieties and Breeding Lines. In: Plant, Animal and Microbe Genomes X Conference, 12-16 January, San Diego.   Piperidis G, Christopher MJ, Carroll BJ, Berding N, et al. (2000). Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43: 1033-1037. PMid:11195335   Selvi A, Nair NV, Balasundaram N and Mohapatra T (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394-403. http://dx.doi.org/10.1139/g03-018 PMid:12834055   Sreenivasan TV, Ahlowalia BS and Heinz D (1987). Germplasm Collection, Maintenance and Use. In: Sugarcane Improvement Through Breeding (Heinz DJ, ed.). Vol. 11. Elsevier, New York, 143-210.   van de Ven WTG and McNicol RJ (1996). Microsatellites as DNA markers in Sitka spruce. Theor. Appl. Genet. 93: 613-617. http://dx.doi.org/10.1007/BF00417956   Weising K, Winter P, Hüttle PB and Kahl G (1997). Microsatellite markers for molecular breeding. J. Crop Prod. 1: 113-143. http://dx.doi.org/10.1300/J144v01n01_06
S. Nawaz, Khan, F. A., Tabasum, S., Zakria, M., Saeed, A., and Iqbal, M. Z., Phylogenetic relationships among Saccharum clones in Pakistan revealed by RAPD markers, vol. 9, pp. 1673-1682, 2010.
Aggarwal RK, Brar DS, Nandi S, Huang N, et al. (1999). Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor. Appl. Genet. 98: 1320-1328. http://dx.doi.org/10.1007/s001220051198   Al-Janabi SM, McClelland M, Petersen C and Sobral BWS (1944). Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor. Appl. Genet. 88: 933-944.   Angiolillo A, Mencuccini M and Baldoni L (1999). Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor. Appl. Genet. 98: 411-421. http://dx.doi.org/10.1007/s001220051087   Arceneaux G (1967). Cultivated sugarcane of the world and their botanical derivation. Proc. Int. Soc. Sugar Cane Technol. 12: 844-845.   Barker JH, Matthes M, Arnold GM, Edwards KJ, et al. (1999). Characterisation of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42: 173-183. PMid:10231956   Burner DM, Pan YB and Webster RD (1997). Genetic diversity of North American and Old World Saccharum assessed by RAPD analysis. Genet. Resour. Crop Evol. 44: 235-240. http://dx.doi.org/10.1023/A:1008631731506   Burnquist WL, Sorrelles ME and Tanksley S (1995). Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc. Int. Soc. Sugar Cane Technol. 21: 355-365.   D'Hont A, Lu YH, Feldmann P and Glaszmann JC (1993). Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1: 12-15.   Harvey H, Huckett BI and Botha FC (1994). Use of polymerase chain reaction and random amplification of polymorphic DNAs for the determination of genetic distances between 21 sugarcane varieties. Proc. S. Afr. Sugar Technol. Assoc. 68: 36-40.   Harvey M and Botha FC (1996). Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica 89: 257-265. http://dx.doi.org/10.1007/BF00034614   Hoisington D, Khairallah M and González D (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. CIMMYT, Mexico.   Hokanson SC, Szewc-McFadden AK, Lamboy WF and McFerson JR (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica borkh. core subset collection. Theor. Appl. Genet. 97: 671-683. http://dx.doi.org/10.1007/s001220050943   Lande R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. PMid:1968875 PMCid:1203965   Lu YH, D'Hont A, Walker DIT, Rao PS, et al. (1994). Relationships among ancestral species of sugarcane revealed with RFLP using single-copy maize nuclear probes. Euphytica 78: 7-18.   Mukherjee SK (1957). Origin and distribution of Saccharum. Bot. Gaz. 119: 55-61. http://dx.doi.org/10.1086/335962   Nair NV, Nair S, Sreenivasan TV and Mohan M (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet. Resour. Crop Evol. 46: 73-79. http://dx.doi.org/10.1023/A:1008696808645   Nair NV, Selvi A, Sreenivasan TV and Pushpalatha KN (2002). Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127: 219-225. http://dx.doi.org/10.1023/A:1020234428681   Nakajima Y, Oeda K and Yamamoto T (1998). Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varieties by RAPD and AFLP. Plant Cell Rep. 17: 848-853. http://dx.doi.org/10.1007/s002990050496   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Orozco-Castillo C, Chalmers KJ, Waugh R and Powell W (1994). Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor. Appl. Genet. 87: 934-940. http://dx.doi.org/10.1007/BF00225787   Pan Y, Miller JD, Schnell Ii RJ, Richard EP Jr, et al. (2003). Application of Microsatellite and RAPD Fingerprints in the Florida Sugarcane Variety Program. In: Plant and Animal Genome Conference, Town & Country Convention Center, January 13-17, San Diego, 43.   Sobral BWS, Braga DPV, LaHood ES and Keim P (1994). Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theor. Appl. Genet. 87: 843-853. http://dx.doi.org/10.1007/BF00221137   Stiles JI, Lemme C, Sondur S, Morshid MB, et al. (1993). Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet. 85: 697-701.   Stuber CW, Polacco M and Senior ML (1999). Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop. Sci. 39: 1571-1583. http://dx.doi.org/10.2135/cropsci1999.3961571x   Wang ZY, Second G and Tanksley SD (1992). Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor. Appl. Genet. 83: 565-581. http://dx.doi.org/10.1007/BF00226900   Weir BS (1990). Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sinauer Associates Inc., Sunderland.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606