Publications

Found 8 results
Filters: Author is L.A.S. Dias  [Clear All Filters]
2012
L. A. S. Dias, Missio, R. F., and Dias, D. C. F. S., Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production, vol. 11. pp. 2719-2728, 2012.
Achten WMJ, Verchot L, Franken YJ and Mathijs E (2008). Jatropha bio-diesel production and use. Biomass Bioenergy 32: 1063-1084. http://dx.doi.org/10.1016/j.biombioe.2008.03.003   Adebowale KO and Adedire CO (2006). Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr. J. Biotechnol. 5: 901-906.   Allard RW (1999). History of plant population genetics. Annu. Rev. Genet. 33: 1-27. http://dx.doi.org/10.1146/annurev.genet.33.1.1 PMid:10690402   Andrade VM, Oliveira TS, Sousa LCA, Oliveira GL, et al. (2008). Coleta de Germoplasma de Pinhão Manso (Jatropha curcas L.) nas Regiões do Triângulo, Noroeste e Norte de Minas Gerais. In: 5° Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel, UFLA, Varginha, 938-943.   Basha SD and Sujatha M (2007). Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156: 375-386. http://dx.doi.org/10.1007/s10681-007-9387-5   Basha SD, Franis G, Makkar HPS, Becker K, et al. (2009). A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci. 176: 812-823. http://dx.doi.org/10.1016/j.plantsci.2009.03.008   CETEC (1983). Produção de Combustíveis Líquidos a Partir de Óleos Vegetais. 1. Estudo das Oleaginosas Nativas de Minas Gerais. CETEC, Belo Horizonte.   Coe FG (2008). Ethnomedicine of the Rama of Southeastern Nicaragua. J. Ethnobiol. 28: 1-38. http://dx.doi.org/10.2993/0278-0771(2008)28[1:EOTROS]2.0.CO;2   Dahmer N, Schifino-Wittmann MT and Dias LAS (2009). Chromosome numbers of Jatropha curcas L.: an important agrofuel plant. Crop Breed. Appl. Biotechnol. 9: 386-389.   Dehgan B and Schutzman B (1994). Contributions toward a monograph of neotropical Jatropha: phenetic and phylogenetic analyses. Ann. Missouri Bot. Garden 81: 349-367. http://dx.doi.org/10.2307/2992102   Dias LAS (2011). Biofuel plant species and the contribution of genetic improvement. Crop Breed. Appl. Biotechnol. S1: 16-26. http://dx.doi.org/10.1590/S1984-70332011000500004   Dias LAS, Leme LP, Laviola BG, Pallini A, et al. (2007). Cultivo de Pinhão Manso (Jatropha curcas L.) para Produção de Óleo Combustível. UFV, Viçosa.   Dias LAS, Muller M and Freire E (2008). Potencial do Uso de Oleaginosas Arbóreas em Sistemas Silvipastoris. In: Sistemas Agrossilvipastoris na América do Sul: Desafios e Potencialidades (Fernandes EM, Paciullo DSC, Castro CRT and Muller MD, eds.). Embrapa Gado de Leite, Juiz de Fora, 283-314.   Emmart EW (1961). Notes on Aztec dye plants: Indians of prehistoric Mexico skilled in use of natural colorings. Plants Gardens 20: 83-85.   Fairless D (2007). Biofuel: the little shrub that could-maybe. Nature 449: 652-655. http://dx.doi.org/10.1038/449652a PMid:17968401   Foidl N, Foidl G, Sanchez M, Mittelbach M, et al. (1996). Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Biores. Technol. 58: 77-82. http://dx.doi.org/10.1016/S0960-8524(96)00111-3   Freitas RG, Missio RF, Matos FS, Resende MD, et al. (2011). Genetic evaluation of Jatropha curcas: an important oilseed for biodiesel production. Genet. Mol. Res. 10: 1490-1498. http://dx.doi.org/10.4238/vol10-3gmr1146 PMid:21823099   Gexsi LLP (2008). Global Market Study on Jatropha. Project Inventory: Latin America. WWF, London/Berlin.   Ghosh A, Patolia JS, Chaudhary DR and Chikara J (2007). Response of Jatropha curcas Under Different Spacing to Jatropha De-oiled Cake. Available at [www.fact-foundation.com/media_en/Jatropha_presscake_as_fertilizer]. Accessed June 16, 2012.   Gorman C (1967). A Priori Models and Thai Prehistory: A Reconsideration of the Beginnings of Agriculture in Southeastern Asia. In: Origins of Agriculture (Reed CA, ed.). The Hague, Mouton, 351-355.   Gübitz GM, Mittelbach M and Trabi M (1999). Exploitation of the tropical oil seed plant Jatropha curcas L. Biores. Technol. 67: 73-82. http://dx.doi.org/10.1016/S0960-8524(99)00069-3   Harper RM (1932). Useful plants of Yucatan. J. Torrey Bot. Soc. 59: 279-288. http://dx.doi.org/10.2307/2480687   Haude ME (1998). Identification of colorants on maps from the early colonial period of New Spain (Mexico). J. Am. Inst. Conserv. 37: 240-270. http://dx.doi.org/10.2307/3179811   Heller J (1996). Physic Nut (Jatropha curcas L.): Promoting the Conservation and Use of Underutilized and Neglected Crops. Institute of Plant Genetics and Crop Plant Research, Rome.   Jongschaap REE, Corré WJ, Bindraban PS and Brandenburg WA (2007). Claims and Facts on Jatropha curcas L. Plant Resource International, Wageningen.   Laviola BG and Dias LAS (2008). Teor e acúmulo de nutrientes em folhas e frutos de pinhão-manso. Rev. Bras. Ciênc. Solo 32: 1969-1975. http://dx.doi.org/10.1590/S0100-06832008000500018   Leonti M, Sticher O and Heinrich M (2003). Antiquity of medicinal plant usage in two Macro-Mayan ethnic groups (Mexico). J. Ethnopharmacol. 88: 119-124. http://dx.doi.org/10.1016/S0378-8741(03)00188-0   Makkar HPS, Becker K, Sporer F and Wink M (1997). Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agric. Food Chem. 45: 3152-3157. http://dx.doi.org/10.1021/jf970036j   Martin G and Mayeux A (1984). Reflections on oil crops as sources of energy. II. The physic nut (Jatropha curcas L.) a possible source of fuel. Oléagineux 39: 283-287.   McVaugh R (1945). The genus Jatropha in America: principal intergeneric groups. Bull. Torrey Bot. Club 72: 271-294. http://dx.doi.org/10.2307/2481288   Nogueira LAH (2004). Perspectivas de un Programa de Biocombustibles en América Central. CEPAL/GTZ, México.   Openshaw K (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19: 1-15. http://dx.doi.org/10.1016/S0961-9534(00)00019-2   Pramanik K (2003). Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energ. 28: 239-248. http://dx.doi.org/10.1016/S0960-1481(02)00027-7   Rug M, Sporer F, Wink M, Liu SY, et al. (1997). Molluscicidal Properties of J. curcas Against Vector Snails of the Human Parasites Schistosoma mansoni and S. japonicum. In: Biofuels and Industrial Products from Jatropha curcas - Proceedings from the Symposium 'Jatropha 97' (Gübitz GM, Mittelbach M and Trabi M, eds.). Austrian Ministry of Foreign Affairs and Sucher & Holzer Graz, Austria, 227-232.   Sharma N and Trivedi PC (2002). Screening of leaf extracts of some plants for their nematicidal and fungicidal properties against Meloidogyne incognita and Fusarium oxysporum. Asian J. Exp. Sci. 16: 21-28.   Standley PC (1967). Trees and Shrubs of Mexico. Smithsonian Institution, Washington. PMid:6074605   Visser EM, Oliveira Filho D, Martins MA and Steward BL (2011). Bioethanol production potential from Brazilian biodiesel co-products. Biomass Bioenergy 35: 489-494. http://dx.doi.org/10.1016/j.biombioe.2010.09.009   Wallert A (1997). The Analysis of Dyestuffs on Historical Textiles from Mexico. In: The Unbroken Thread: Conserving the Textile Traditions of Oaxaca (Kathryn Klein, ed.). J. Paul Getty Trust, Los Angeles, 57-85.   Wilbur RL (1954). A synopsis of Jatropha, subsection Eucurcas, with the description of two new species from Mexico. J. Elisha Mitchell Sci. Soc. 70: 92-101.   Zahawi RA (2005). Establishment and growth of living fence species: an overlooked tool for the restoration of degraded areas in the tropics. Restoration Ecol. 13: 92-102. http://dx.doi.org/10.1111/j.1526-100X.2005.00011.x
L. A. S. Dias, Relative h-index to compare the scientific performance of researchers, vol. 11. pp. 1738-1740, 2012.
Campbell P (2008). Escape from the impact factor. Ethics Sci. Environ. Polit. 8: 5-7. http://dx.doi.org/10.3354/esep00078   Hirsch JE (2005). An index to quantify an individual's scientific research output. Proc. Natl. Acad. Sci. USA 102: 16569-16572. http://dx.doi.org/10.1073/pnas.0507655102 PMid:16275915 PMCid:1283832
2011
R. F. Missio, Caixeta, E. T., Zambolim, E. M., Pena, G. F., Zambolim, L., Dias, L. A. S., and Sakiyama, N. S., Genetic characterization of an elite coffee germplasm assessed by gSSR and EST-SSR markers, vol. 10, pp. 2366-2381, 2011.
Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, et al. (2007). Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Genet. 114: 359-372. http://dx.doi.org/10.1007/s00122-006-0440-x PMid:17115127 Baek HJ, Beharav A and Nevo E (2003). Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor. Appl. Genet. 106: 397-410. PMid:12589539 Baruah A, Naik V, Hendre PS and Rajkumar R (2003). Isolation and characterization of nine microsatellite markers from Coffea arabica L., showing wide cross-species amplifications. Mol. Ecol. Notes 3: 647-650. http://dx.doi.org/10.1046/j.1471-8286.2003.00544.x Beharav A and Nevo E (2003). Predictive validity of discriminant analysis for genetic data. Genetica 119: 259-267. http://dx.doi.org/10.1023/B:GENE.0000003666.33328.22 PMid:14686605 Blair MW, Giraldo MC, Buendia HF, Tovar E, et al. (2006). Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 113: 100-109. http://dx.doi.org/10.1007/s00122-006-0276-4 PMid:16614831 Brito GG, Caixeta ET, Gallina AP, Maciel-Zambolim E, et al. (2010). Inheritance of coffee leaf rust resistance and identification of AFLP markers linked to the resistance gene. Euphytica 173: 255-264. http://dx.doi.org/10.1007/s10681-010-0119-x Chabane K, Ablett GA, Cordeiro GM, Valkoun J, et al. (2006). EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet. Resour. Crop Evol. 52: 903-909. http://dx.doi.org/10.1007/s10722-003-6112-7 Cho YG, Ishii T, Temnykh S, Chen X, et al. (2000). Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 713-722. http://dx.doi.org/10.1007/s001220051343 Cordeiro GM, Casu R, McIntyre CL, Manners JM, et al. (2001). Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci. 160: 1115-1123. http://dx.doi.org/10.1016/S0168-9452(01)00365-X Cruz CD (2007). Genes versão 2007.0.0, Programa GENES versão Windows. Available at [www.ufv.br/dbg/genes/genes.htm]. Accessed October 21, 2010. Diniz LEC, Sakiyama NS, Lashermes P, Caixeta ET, et al. (2005). Analysis of AFLP markers associated to the Mex-1 resistance locus in Icatu progenies. Crop Breed. Appl. Biotechnol. 5: 387-393. Donini P, Stephenson P, Bryan GJ and Koebner RMD (1998). The potential of microsatellite for high throughput genetic diversity assessment in wheat and barley. Genet. Resour. Crop Evol. 45: 415-421. http://dx.doi.org/10.1023/A:1008612917967 Eujayl I, Sorrells M, Baum M, Wolters P, et al. (2001). Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119: 39-43. http://dx.doi.org/10.1023/A:1017537720475 Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282    PMCid:1205020 Fahima T, Sun GL, Beharav A, Krugman T, et al. (1999). RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 98: 434-447. http://dx.doi.org/10.1007/s001220051089 Gadaleta A, Mangini G, Mulè G and Blanco A (2007). Characterization of dinucleotide and trinucleotide EST-derived microsatellites in the wheat genome. Euphytica 153: 73-85. http://dx.doi.org/10.1007/s10681-006-9243-z Gupta PK and Varshney RK (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163-185. http://dx.doi.org/10.1023/A:1003910819967 Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, et al. (2000). Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res. 10: 62-71. PMid:10645951    PMCid:310497 Hamilton MB, Pincus EL, Di FA and Fleischer RC (1999). Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27: 500-507. PMid:10489609 He G, Meng R, Gao H, Guo B, et al. (2005). Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142: 131-136. http://dx.doi.org/10.1007/s10681-005-1043-3 Hendre PS, Phanindranath R, Annapurna V, Lalremruata A, et al. (2008). Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies. BMC Plant Biol. 8: 51. http://dx.doi.org/10.1186/1471-2229-8-51 PMid:18447947    PMCid:2396172 Jaccard P (1908). Nouvelles Recherches sur la Distribution Florale. Bull. Soc. Vdoise Sci. Nat. 44: 223-270. Leigh F, Lea V, Law J and Wolteret P (2003). Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133: 359-366. http://dx.doi.org/10.1023/A:1025778227751 Maluf MP, Silvestrini M, Ruggiero LMC and Guerreiro Filho O (2005). Genetic diversity of cultivated Coffea arabica inbred lines assessed by RAPD, AFLP and SSR marker systems. Sci. Agric. 62: 366-373. http://dx.doi.org/10.1590/S0103-90162005000400010 Metais I, Hamon B, Jalouzot R and Peltier D (2002). Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor. Appl. Genet. 104: 1346-1352. http://dx.doi.org/10.1007/s00122-002-0901-9 PMid:12582590 Missio RF, Caixeta ET, Zambolim EM and Zambolim L (2009a). Development and validation of SSR markers for Coffea arabica L. Crop Breed. Appl. Biotechnol. 9: 361-371. Missio RF, Caixeta ET, Zambolim EM and Pena GF (2009b). Assessment of EST-SSR markers for genetic analysis on coffee. Bragantia 68: 576-581. http://dx.doi.org/10.1590/S0006-87052009000300003 Missio RF, Caixeta ET, Zambolim EM and Zambolim L (2010). Polymorphic information content of SSR markers for Coffea spp. Crop Breed. Appl. Biotechnol. 10: 89-94. Pessoni LA (2007). Estratégias de Análise da Diversidade em Germoplasmas de Cajueiro (Anacardium spp. L.). Doctoral thesis, Universidade Federal de Viçosa, Viçosa. Poncet V, Hamon P, Minier J, Carasco C, et al. (2004). SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 47: 1071-1081. http://dx.doi.org/10.1139/g04-064 PMid:15644965 Poncet V, Rondeau M, Tranchant C, Cayrel A, et al. (2006). SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Mol. Genet. Genomics 276: 436-449. http://dx.doi.org/10.1007/s00438-006-0153-5 PMid:16924545 SAS Institute (1996). SAS User Guide: Statistics, Version 609. SAS Institute Inc., Cary. Scott KD, Eggler P, Seaton G and Rossetto M (2000). Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100: 723-726. http://dx.doi.org/10.1007/s001220051344 Silvestrini M, Junqueira MG, Favarin AC and Guerreiro-Filho O (2007). Genetic diversity and structure of Ethiopian, Yemen and Brazilian Coffea arabica L. accessions using microsatellites markers. Genet. Resour. Crop Evol. 54: 1367-1379. http://dx.doi.org/10.1007/s10722-006-9122-4 Tanksley SD and McCouch SR (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063-1066. http://dx.doi.org/10.1126/science.277.5329.1063 PMid:9262467 Van de Peer Y and De Wachter R (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comp. Appl. Biosci. 10: 569-570. PMid:7828077 Varshney RK, Graner A and Sorrells ME (2005). Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48-55. http://dx.doi.org/10.1016/j.tibtech.2004.11.005 PMid:15629858
R. G. Freitas, Missio, R. F., Matos, F. S., Resende, M. D. V., and Dias, L. A. S., Genetic evaluation of Jatropha curcas: an important oilseed for biodiesel production, vol. 10, pp. 1490-1498, 2011.
Basha SD and Sujatha M (2007). Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156: 375-386. doi:10.1007/s10681-007-9387-5 Basha SD, Francis G, Makkar HPS and Becker K (2009). A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci. 176: 812-823. doi:10.1016/j.plantsci.2009.03.008 Bernardo R (2002). Breeding for Quantitative Traits in Plants. Stemma Press, Woodbury. Cruz CD (2006). Genes Versão 2006.4.1: Programa Genes Versão Windows. Universidade Federal de Viçosa, Viçosa. Dahmer N, Schifino-Wittmann MT and Dias LAS (2009). Chromosome numbers of Jatropha curcas L.: an important agrofuel plant. Crop Breed. Appl. Biotechnol. 9: 386-389. Dias LAS, Leme LP, Laviola BG and Pallini A (2007). Cultivo de Pinhão Manso (Jatropha curcas L.) para Produção de Óleo Combustível. Universidade Federal de Viçosa, Viçosa. Divakara BN, Upadhyaya HD, Wani SP and Gowda CLL (2009). Biology and genetic improvement of Jatropha curcas L.: a review. Appl. Energy 87: 732-742. doi:10.1016/j.apenergy.2009.07.013 Ginwal HS, Rawat OS and Srivastava RL (2004). Seed source variation in growth performance and oil yield of Jatropha curcas Linn. in Central India. Silvae Genet. 53: 186-192. Ginwal HS, Phartyal SS, Rawat OS and Srivastava RL (2005). Seed source variation in morphology, germination and seedling growth of Jatropha curcas Linn. in Central India. Silvae Genet. 54: 76-80. Heller J (1996). Physic Nut (Jatropha curcas L.). Promoting the Conservation and Use of Underutilized and Neglected Crops. International Board for Plant Genetic Resources, Roma, 161. Jongschaap REE, Corré WJ, Bindraban OS and Brandenburg WA (2007). Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation, breeding and propagation programme. Plant Res. Int. Report 158. Kaushik N, Kumar K, Kumar S, Kaushikb N, et al. (2007). Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31: 497-502. doi:10.1016/j.biombioe.2007.01.021 Mishra DK (2009). Selection of candidate plus phenotypes of Jatropha curcas L. using method of paired comparisons. Biomass Bioenergy 33: 542-545. doi:10.1016/j.biombioe.2008.08.004 Rao GR, Korwar GR, Shanker AK and Ramakrishna YS (2008). Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees 22: 697-709. doi:10.1007/s00468-008-0229-4 Resende MDV (2007). Software Selegen-Reml/Blup. Embrapa Floresta, Colombo. SAS Institute Inc. (1989). SAS/STAT User’s Guide: Version 6. 4th edn. SAS Institute, Cary. Sun QB, Li LF, Li Y, Wu GJ, et al. (2008). SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci. 48: 1865-1871. doi:10.2135/cropsci2008.02.0074