Publications

Found 61 results
Filters: Author is X. Li  [Clear All Filters]
2013
D. Wang, Wang, Z. J., Song, X. X., Pu, L. H., Li, X., and Wang, Y., Analysis of differentially expressed genes in various stages of Duchenne muscular dystrophy by using a network view, vol. 12, pp. 4480-4488, 2013.
D. Zheng, Yang, G., Li, X., Wang, Z., and Hung, W. N. N., An efficient algorithm for finding attractors in synchronous Boolean networks with biochemical applications, vol. 12, pp. 4656-4666, 2013.
L. He, Yao, H., Fan, L. H., Liu, L., Qiu, S., Li, X., Gao, J. P., and Hao, C. Q., MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3, vol. 12, pp. 1012-1021, 2013.
Ambros V and Chen X (2007). The regulation of genes and genomes by small RNAs. Development 134: 1635-1641. http://dx.doi.org/10.1242/dev.002006 PMid:17409118   Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. http://dx.doi.org/10.1016/j.cell.2004.12.031 PMid:15652478   Chen C, Ridzon DA, Broomer AJ, Zhou Z, et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179. http://dx.doi.org/10.1093/nar/gni178 PMid:16314309 PMCid:1292995   Chen H, Chen Q, Fang M and Mi Y (2009). Regulatory effect on the proliferation of the leukemic cell HL-60 by miRNA- 181b through MLK2 science in China. Life Sci. 39: 1034-1040.   de Yébenes VG, Belver L, Pisano DG, Gonzalez S, et al. (2008). miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199-2206. http://dx.doi.org/10.1084/jem.20080579 PMid:18762567 PMCid:2556787   Debernardi S, Skoulakis S, Molloy G, Chaplin T, et al. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21: 912-916. PMid:17330104   Gibson W, Green A, Bullard RS, Eaddy AC, et al. (2007). Inhibition of PAX2 expression results in alternate cell death pathways in prostate cancer cells differing in p53 status. Cancer Lett. 248: 251-261. http://dx.doi.org/10.1016/j.canlet.2006.08.007 PMid:16996682   Jonler M and Pedersen KV (2007). Diagnosis, evaluation and follow-up of patients with prostatic cancer. Ugeskr. Laeger 169: 1889-1891. PMid:17553363   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Marcucci G, Radmacher MD, Maharry K, Mrózek K, et al. (2008). MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358: 1919-1928. http://dx.doi.org/10.1056/NEJMoa074256 PMid:18450603   Meltzer PS (2005). Cancer genomics: small RNAs with big impacts. Nature 435: 745-746. http://dx.doi.org/10.1038/435745a PMid:15944682   Nakajima G, Hayashi K, Xi Y, Kudo K, et al. (2006). Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3: 317-324. PMid:18172508 PMCid:2170889   Ozen M, Creighton CJ, Ozdemir M and Ittmann M (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27: 1788-1793. http://dx.doi.org/10.1038/sj.onc.1210809 PMid:17891175   Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, et al. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66: 11590-11593. http://dx.doi.org/10.1158/0008-5472.CAN-06-3613 PMid:17178851   Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, et al. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res. 67: 6130-6135. http://dx.doi.org/10.1158/0008-5472.CAN-07-0533 PMid:17616669   Prueitt RL, Yi M, Hudson RS, Wallace TA, et al. (2008). Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68: 1152-1164. http://dx.doi.org/10.1002/pros.20786 PMid:18459106 PMCid:2597330   Rajewsky N (2006). microRNA target predictions in animals. Nat. Genet. 38 Suppl: S8-13. http://dx.doi.org/10.1038/ng1798 PMid:16736023   Schaefer A, Jung M, Mollenkopf HJ, Wagner I, et al. (2010). Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 126: 1166-1176. PMid:19676045   Shi L, Cheng Z, Zhang J, Li R, et al. (2008). hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 1236: 185-193. http://dx.doi.org/10.1016/j.brainres.2008.07.085 PMid:18710654   Spahn M, Kneitz S, Scholz CJ, Stenger N, et al. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer 127: 394-403. PMid:19585579   Stark A, Brennecke J, Bushati N, Russell RB, et al. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123: 1133-1146. http://dx.doi.org/10.1016/j.cell.2005.11.023 PMid:16337999   Volinia S, Calin GA, Liu CG, Ambs S, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103: 2257-2261. http://dx.doi.org/10.1073/pnas.0510565103 PMid:16461460 PMCid:1413718   Xu L and Wang GM (2007). The progress and current situation in the management of moderate and far advanced prostate cancer. Int. J. Urol. Nephrol. 27: 773.   Zhang B and Farwell MA (2008). microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J. Cell Mol. Med. 12: 3-21. http://dx.doi.org/10.1111/j.1582-4934.2007.00196.x PMid:18088390
J. Li, Wang, L., Li, H., Zhang, R., Li, X., and Guo, M., Relationship of common expression quantitative trait loci genes to the immune system, vol. 12, pp. 6546-6553, 2013.
J. Wang, Zhou, X., Zhao, J., Li, Z., and Li, X., Screening for feature genes associated with hereditary hemochromatosis and functional analysis with DNA microarrays, vol. 12, pp. 6240-6248, 2013.
Y. Z. Li, Wang, L. J., Li, X., Li, S. L., Wang, J. L., Wu, Z. H., Gong, L., and Zhang, X. D., Vascular endothelial growth factor gene polymorphisms contribute to the risk of endometriosis: an updated systematic review and meta-analysis of 14 case-control studies, vol. 12, pp. 1035-1044, 2013.
Altinkaya SO, Ugur M, Ceylaner G, Ozat M, et al. (2011). Vascular endothelial growth factor +405 C/G polymorphism is highly associated with an increased risk of endometriosis in Turkish women. Arch. Gynecol. Obstet. 283: 267-272. http://dx.doi.org/10.1007/s00404-009-1344-1 PMid:20041256   Attar R, Agachan B, Kuran SB, Toptas B, et al. (2010). Genetic variants of vascular endothelial growth factor and risk for the development of endometriosis. In Vivo 24: 297-301. PMid:20555002   Bhanoori M, Arvind BK, Pavankumar Reddy NG, Lakshmi RK, et al. (2005). The vascular endothelial growth factor (VEGF) +405G>C 5'-untranslated region polymorphism and increased risk of endometriosis in South Indian women: a case control study. Hum. Reprod. 20: 1844-1849. http://dx.doi.org/10.1093/humrep/deh852 PMid:15746194   Cosin R, Gilabert-Estelles J, Ramon LA, Espana F, et al. (2009). Vascular endothelial growth factor polymorphisms (-460C/T, +405G/C, and 936C/T) and endometriosis: their influence on vascular endothelial growth factor expression. Fertil. Steril. 92: 1214-1220. http://dx.doi.org/10.1016/j.fertnstert.2008.08.079 PMid:18930211   Ferrara N (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25: 581-611. http://dx.doi.org/10.1210/er.2003-0027 PMid:15294883   Ferrara N, Gerber HP and LeCouter J (2003). The biology of VEGF and its receptors. Nat. Med. 9: 669-676. http://dx.doi.org/10.1038/nm0603-669 PMid:12778165   Fukumura D, Xavier R, Sugiura T, Chen Y, et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715-725. http://dx.doi.org/10.1016/S0092-8674(00)81731-6   Gentilini D, Somigliana E, Vigano P, Vignali M, et al. (2008). The vascular endothelial growth factor +405G>C polymorphism in endometriosis. Hum. Reprod. 23: 211-215. http://dx.doi.org/10.1093/humrep/dem341 PMid:17977866   Girling JE and Rogers PA (2005). Recent advances in endometrial angiogenesis research. Angiogenesis 8: 89-99. http://dx.doi.org/10.1007/s10456-005-9006-9 PMid:16211359   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hsieh YY, Chang CC, Tsai FJ, Yeh LS, et al. (2004). T allele for VEGF gene-460 polymorphism at the 5'-untranslated region: association with a higher susceptibility to endometriosis. J. Reprod. Med. 49: 468-472. PMid:15283056   Ikuhashi Y, Yoshida S, Kennedy S, Zondervan K, et al. (2007). Vascular endothelial growth factor +936 C/T polymorphism is associated with an increased risk of endometriosis in a Japanese population. Acta Obstet. Gynecol. Scand. 86: 1352-1358. http://dx.doi.org/10.1080/00016340701644991 PMid:17963063   Kang S, Zhao J, Liu Q, Zhou R, et al. (2009). Vascular endothelial growth factor gene polymorphisms are associated with the risk of developing adenomyosis. Environ. Mol. Mutagen. 50: 361-366. http://dx.doi.org/10.1002/em.20455 PMid:19197986   Kim JG, Kim JY, Jee BC, Suh CS, et al. (2008). Association between endometriosis and polymorphisms in endostatin and vascular endothelial growth factor and their serum levels in Korean women. Fertil. Steril. 89: 243-245. http://dx.doi.org/10.1016/j.fertnstert.2007.02.023 PMid:17482599   Kim SH, Choi YM, Choung SH, Jun JK, et al. (2005). Vascular endothelial growth factor gene +405 C/G polymorphism is associated with susceptibility to advanced stage endometriosis. Hum. Reprod. 20: 2904-2908. http://dx.doi.org/10.1093/humrep/dei146 PMid:15979997   Lamp M, Saare M, Laisk T, Karro H, et al. (2010). Genetic variations in vascular endothelial growth factor but not in angiotensin I-converting enzyme genes are associated with endometriosis in Estonian women. Eur. J. Obstet. Gynecol. Reprod. Biol. 153: 85-89. http://dx.doi.org/10.1016/j.ejogrb.2010.07.021 PMid:20685027   Liu Q, Li Y, Zhao J, Sun DL, et al. (2009a). Association of polymorphisms -1154G/A and -2578C/A in the vascular endothelial growth factor gene with decreased risk of endometriosis in Chinese women. Hum. Reprod. 24: 2660-2666. http://dx.doi.org/10.1093/humrep/dep208 PMid:19531502   Liu Q, Li Y, Zhao J, Zhou RM, et al. (2009b). Association of single nucleotide polymorphisms in VEGF gene with the risk of endometriosis and adenomyosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 165-169. PMid:19350508   Matalliotakis IM, Katsikis IK and Panidis DK (2005). Adenomyosis: what is the impact on fertility? Curr. Opin. Obstet. Gynecol. 17: 261-264. http://dx.doi.org/10.1097/01.gco.0000169103.85128.c0 PMid:15870560   Missmer SA and Cramer DW (2003). The epidemiology of endometriosis. Obstet. Gynecol. Clin. North Am. 30: 1-19, vii. http://dx.doi.org/10.1016/S0889-8545(02)00050-5   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Signorile PG and Baldi A (2010). Endometriosis: new concepts in the pathogenesis. Int. J. Biochem. Cell Biol. 42: 778-780. http://dx.doi.org/10.1016/j.biocel.2010.03.008 PMid:20230903   Varma R, Rollason T, Gupta JK and Maher ER (2004). Endometriosis and the neoplastic process. Reproduction 127: 293-304. http://dx.doi.org/10.1530/rep.1.00020 PMid:15016949   Vigano P, Parazzini F, Somigliana E and Vercellini P (2004). Endometriosis: epidemiology and aetiological factors. Best. Pract. Res. Clin. Obstet. Gynaecol. 18: 177-200. http://dx.doi.org/10.1016/j.bpobgyn.2004.01.007 PMid:15157637   von Elm E, Altman DG, Egger M, Pocock SJ, et al. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370: 1453-1457. http://dx.doi.org/10.1016/S0140-6736(07)61602-X   Watson CJ, Webb NJ, Bottomley MJ and Brenchley PE (2000). Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12: 1232- 1235. http://dx.doi.org/10.1006/cyto.2000.0692 PMid:10930302   Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin. Exp. Rheumatol 29: 285-292. PMid:21418777   Zhao ZZ, Nyholt DR, Thomas S, Treloar SA, et al. (2008). Polymorphisms in the vascular endothelial growth factor gene and the risk of familial endometriosis. Mol. Hum. Reprod. 14: 531-538. http://dx.doi.org/10.1093/molehr/gan043 PMid:18650217   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
2012
J. Liu, Li, X., Yu, N., Yang, Y. - Q., Li, X., Ye, Z. - Y., and Li, J. - C., Genetic instability and CpG methylation in the 5'-flanking region of the PAI-1 gene in Chinese patients with gastric cancer, vol. 11, pp. 2899-2908, 2012.
Andreasen PA, Egelund R and Petersen HH (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol. Life Sci. 57: 25-40. http://dx.doi.org/10.1007/s000180050497 PMid:10949579   Baylin SB and Herman JG (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16: 168-174. http://dx.doi.org/10.1016/S0168-9525(99)01971-X   Chakrabarti S, Sengupta S, Sengupta A, Basak SN, et al. (2006). Genomic instabilities in squamous cell carcinoma of head and neck from the Indian population. Mol. Carcinog. 45: 270-277. http://dx.doi.org/10.1002/mc.20178 PMid:16402388   Durand MK, Bodker JS, Christensen A, Dupont DM, et al. (2004). Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb. Haemost. 91: 438-449. PMid:14983218   Esteller M (2003). Cancer epigenetics: DNA methylation and chromatin alterations in human cancer. Adv. Exp. Med. Biol. 532: 39-49. http://dx.doi.org/10.1007/978-1-4615-0081-0_5 PMid:12908548   Gao S, Skeldal S, Krogdahl A, Sorensen JA, et al. (2005). CpG methylation of the PAI-1 gene 5'-flanking region is inversely correlated with PAI-1 mRNA levels in human cell lines. Thromb. Haemost. 94: 651-660. PMid:16268485   Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, et al. (1995). Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55: 4531-4535. PMid:7553622   Gopalan V, Smith RA, Nassiri MR, Yasuda K, et al. (2010). GAEC1 and colorectal cancer: a study of the relationships between a novel oncogene and clinicopathologic features. Hum. Pathol. 41: 1009-1015. http://dx.doi.org/10.1016/j.humpath.2009.11.014 PMid:20236690   Jemal A, Siegel R, Ward E, Hao Y, et al. (2008). Cancer statistics, 2008. CA Cancer J. Clin. 58: 71-96. http://dx.doi.org/10.3322/CA.2007.0010 PMid:18287387   Juvan R, Hudler P, Gazvoda B, Repse S, et al. (2007). Significance of genetic abnormalities of p53 protein in Slovenian patients with gastric carcinoma. Croat. Med. J. 48: 207-217. PMid:17436385 PMCid:2080507   Nuovo GJ, Plaia TW, Belinsky SA, Baylin SB, et al. (1999). In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc. Natl. Acad. Sci. U. S. A. 96: 12754-12759. http://dx.doi.org/10.1073/pnas.96.22.12754 PMid:10535995 PMCid:23084   Ozisik YY, Meloni AM, Surti U and Sandberg AA (1993). Deletion 7q22 in uterine leiomyoma. A cytogenetic review. Cancer Genet. Cytogenet. 71: 1-6. http://dx.doi.org/10.1016/0165-4608(93)90195-R   Sakakibara T, Hibi K, Koike M, Fujiwara M, et al. (2006). Plasminogen activator inhibitor-1 as a potential marker for the malignancy of gastric cancer. Cancer Sci. 97: 395-399. http://dx.doi.org/10.1111/j.1349-7006.2006.00185.x PMid:16630137   Sato N, Fukushima N, Maitra A, Matsubayashi H, et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 63: 3735-3742. PMid:12839967   Sourla A, Polychronakos C, Zeng WR, Nepveu A, et al. (1996). Plasminogen activator inhibitor 1 messenger RNA expression and molecular evidence for del(7)(q22) in uterine leiomyomas. Cancer Res. 56: 3123-3128. PMid:8674071   Storchova Z and Pellman D (2004). From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5: 45-54. http://dx.doi.org/10.1038/nrm1276 PMid:14708009   Strathdee G, Davies BR, Vass JK, Siddiqui N, et al. (2004). Cell type-specific methylation of an intronic CpG island controls expression of the MCJ gene. Carcinogenesis 25: 693-701. http://dx.doi.org/10.1093/carcin/bgh066 PMid:14729589   Wind T, Hansen M, Jensen JK and Andreasen PA (2002). The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpin fragment. Biol. Chem. 383: 21-36. http://dx.doi.org/10.1515/BC.2002.003 PMid:11928815   Wu C and Morris JR (2001). Genes, genetics, and epigenetics: a correspondence. Science 293: 1103-1105. http://dx.doi.org/10.1126/science.293.5532.1103 PMid:11498582   Xiao YP, Wu DY, Xu L and Xin Y (2006). Loss of heterozygosity and microsatellite instabilities of fragile histidine triad gene in gastric carcinoma. World J. Gastroenterol. 12: 3766-3769. PMid:16773697   Yang YQ, Wu L, Chen JX, Sun JZ, et al. (2008). Relationship between nm23H1 genetic instability and clinical pathological characteristics in Chinese digestive system cancer patients. World J. Gastroenterol. 14: 5549-5556. http://dx.doi.org/10.3748/wjg.14.5549 PMid:18810774 PMCid:2746343
Y. Wang, Tang, Y., Zhang, M., Cai, F., Qin, J., Wang, Q., Liu, C., Wang, G., Xu, L., Yang, L., Li, J., Wang, Z., and Li, X., Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae), vol. 11, pp. 4711-4719, 2012.
Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654. http://dx.doi.org/10.1073/pnas.0406377102 PMid:15695592 PMCid:548969   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997. http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x   Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871. PMid:11283341 PMCid:135529   Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004   Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71. http://dx.doi.org/10.1105/tpc.108.061309 PMid:19155348 PMCid:2648069   Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567. http://dx.doi.org/10.1139/G10-034 PMid:20616877   Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.   Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252 PMid:16669768   Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388. http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x PMid:21054438   Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383. http://dx.doi.org/10.1016/S0031-9422(03)00377-7   Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322. http://dx.doi.org/10.1016/S0305-1978(03)00074-7   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517. http://dx.doi.org/10.1016/S0022-2836(75)80083-0   Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465. http://dx.doi.org/10.1007/s11101-007-9076-y   Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399. http://dx.doi.org/10.1126/science.1078540 PMid:12532018
2011
C. Wang, Tong, Q., Hu, X. Z., Yang, L. G., Zhong, X. Q., Yu, Y., Wu, J. J., Liu, W. J., Li, X., Hua, G. H., Zhao, H. Q., and Zhang, S. J., Identification of complex vertebral malformation carriers in Holstein cattle in south China, vol. 10, pp. 2443-2448, 2011.
Agerholm JS, Bendixen C, Andersen O and Arnbjerg J (2001). Complex vertebral malformation in Holstein calves. J. Vet. Diagn. Invest. 13: 283-289. http://dx.doi.org/10.1177/104063870101300401 PMid:11478598 Batiz LF, Roales-Bujan R, Rodriguez-Perez LM, Matas IM, et al. (2009). A simple PCR-based genotyping method for M105I mutation of alpha-SNAP enhances the study of early pathological changes in hyh phenotype. Mol. Cell. Probes 23: 281-290. http://dx.doi.org/10.1016/j.mcp.2009.07.002 PMid:19615440 Bendixen CC, Svendsen S, Jensen H, Panitz F, et al. (2002). Genetic Test for the Identification of Carriers of Complex Vertebral Malformation in Cattle. World Intelectual Property Organization Publication No. PCT/WO 02/40709 A2 United States Patent: 7094544. Berglund B, Persson A and Stalhammar H (2004). Effects of complex vertebral malformation on fertility in Swedish Holstein cattle. Acta Vet. Scand. 45: 161-165. http://dx.doi.org/10.1186/1751-0147-45-161 PMid:15663076    PMCid:1820991 Chu Q, Sun D, Yu Y, Zhang Y, et al. (2008). Identification of complex vertebral malformation carriers in Chinese Holstein. J. Vet. Diagn. Invest. 20: 228-230. http://dx.doi.org/10.1177/104063870802000215 PMid:18319439 Ghanem ME, Akita M, Suzuki T, Kasuga A, et al. (2008). Complex vertebral malformation in Holstein cows in Japan and its inheritance to crossbred F1 generation. Anim. Reprod. Sci. 103: 348-354. http://dx.doi.org/10.1016/j.anireprosci.2007.05.006 PMid:17574783 Hosseini SY, Sabahi F, Amini-Bavil-Olyaee S, Alavian SM, et al. (2006). A novel accurate ACRS-PCR method with a digestion internal control for identification of wild type and YMDD mutants of hepatitis B virus strains. J. Virol. Methods 137: 298-303. http://dx.doi.org/10.1016/j.jviromet.2006.07.008 PMid:16962669 Kanae Y, Endoh D, Nagahata H and Hayashi M (2005). A method for detecting complex vertebral malformation in Holstein calves using polymerase chain reaction-primer introduced restriction analysis. J. Vet. Diagn. Invest. 17: 258-262. http://dx.doi.org/10.1177/104063870501700309 PMid:15945384 Kearney JF, Amer PR and Villanueva B (2005). Cumulative discounted expressions of sire genotypes for the complex vertebral malformation and beta-casein loci in commercial dairy herds. J. Dairy Sci. 88: 4426-4433. http://dx.doi.org/10.3168/jds.S0022-0302(05)73129-5 Rusc A and Kaminski S (2007). Prevalence of complex vertebral malformation carriers among Polish Holstein-Friesian bulls. J. Appl. Genet. 48: 247-252. http://dx.doi.org/10.1007/BF03195219 PMid:17666777 Shayan P, Eslami A and Borji H (2007). Innovative restriction site created PCR-RFLP for detection of benzimidazole resistance in Teladorsagia circumcincta. Parasitol. Res. 100: 1063-1068. http://dx.doi.org/10.1007/s00436-006-0357-y PMid:17136564 Thomsen B, Horn P, Panitz F, Bendixen E, et al. (2006). A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 16: 97-105. http://dx.doi.org/10.1101/gr.3690506 PMid:16344554    PMCid:1356133
Z. S. Peng, Li, X., Yang, Z. J., and Liao, M. L., A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai, vol. 10, pp. 2349-2357, 2011.
Allan RE (1989). Agromonic comparison between Rht1 and Rht2 semi-dwarf gene in winter wheat. Crop Sci. 29: 1103- 1108. http://dx.doi.org/10.2135/cropsci1989.0011183X002900050001x Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Borlaug NE (1968). Wheat Breeding and its Impact on World Food Supply. In: Proceedings of the 3rd International Wheat Genetics Symposium (Finlay KW and Shephard KW, eds.). Australian Academy of Sciences, Canberra, 1-36. Borner A and Worland AJ (2002). Does the Chinese dwarf wheat variety ‘XN0004’ carry Rht21? Cereal Res. Inst. 30: 25-29. Botwright TL, Rebetzke GJ, Condon AG and Richards RA (2001). The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Aust. J. Plant Physiol. 28: 417-423. Botwright TL, Rebetzke GJ, Condon AG and Richards RA (2005). Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann. Bot. 95: 631-639. http://dx.doi.org/10.1093/aob/mci069 PMid:15655105 Byerlee D and Moya P (1993). Impacts of International Wheat Breeding Research in Developing World. CIMMYT, Mexico. Calderini DF, Dreccer MF and Slafer GA (1995). Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. Plant Breed. 114: 108-112. http://dx.doi.org/10.1111/j.1439-0523.1995.tb00772.x Clark MS (1997). Plant Molecular Biology: A Laboratory Manual. Springer, Berlin. D’Ambrogio de Argueso (1986). Manual de Técnicas en Histología Vegetal (Handbook of Plant Histological Techniques). Editorial Hemisferio Sur SA, Buenos Aires. Ellis MH, Rebetzke GJ, Azanza F, Richards RA, et al. (2005). Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 111: 423-430. http://dx.doi.org/10.1007/s00122-005-2008-6 PMid:15968526 Evans LT (1993). Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge. Gale MD and Youssefian S (1985). Dwarfing Genes in Wheat. In: Plant Breeding Progress Reviews. Butterworths and Co., London, 1-35. Gupta PK, Langridge P and Mir RR (2010). Marker-assisted wheat breeding: present status and future possibilities. Mol. Breed. 26: 145-161. http://dx.doi.org/10.1007/s11032-009-9359-7 Hedden P (2003). The genes of the Green Revolution. Trends Genet. 19: 5-9. http://dx.doi.org/10.1016/S0168-9525(02)00009-4 Hoogendoorn J, Rickson JM and Gale MD (1990). Differences in leaf and stem anatomy related to plant height of tall and dwarf wheat (Triticum aestivum L.). J. Plant Physiol. 136: 72-77. http://dx.doi.org/10.1016/S0176-1617(11)81618-4 Keyes GJ, Paolillo DJ and Sorrells ME (1989). The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Ann. Bot. 64: 683-690. Konzak CF (1987). Mutations and Mutation Breeding. In: Wheat and Wheat Improvement. 2nd edn. (Heyne EG, ed.). American Society of Agronomy, Madison, 428-443. Konzak CF (1988). Genetic Analysis, Genetic Improvement and Evaluation of Induced Semi-Dwarf Mutants in Wheat. Semidwarf Cereal Mutants and Their Use in Cross-Breeding III Research Coordination Meeting, December, 16-20, 1985. International Atomic Energy Agency, Vienna. Korzun V, Röder M, Worland AJ and Börner A (1997). Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed. 116: 227-232. http://dx.doi.org/10.1111/j.1439-0523.1997.tb00987.x Korzun V, Röder MS, Ganal MW, Worland AJ, et al. (1998). Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L). Theor. Appl. Genet. 96: 1104-1109. http://dx.doi.org/10.1007/s001220050845 Kosambi DD (1944). The estimation of map distances from recombination values. Ann. Eugen. 12: 172-175. http://dx.doi.org/10.1111/j.1469-1809.1943.tb02321.x Law CN, Snape JW and Worland AJ (1978). The genetical relationship between height and yield in wheat. Heredity 40: 133-151. http://dx.doi.org/10.1038/hdy.1978.13 Lincoln SE, Daly MJ and Lander ES (1993). Constructing linkage maps with MAPMAKER / Exp version 3.0: A Tutorial Reference Manual. 3rd edn. Whitehead Institute for Medical Res, Cambridge. McIntosh RA, Yamazaki Y, Devos KM and Dubcovsky J (2003). Catalogue of Gene Symbols for Wheat. In: Proceedings of 10th International Wheat Genetic Symposium, Paestum, 4: 1-6. Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 Miralles DJ, Calderini DF, Pomar KP and D’Ambrogio A (1998). Dwarfing genes and cell dimensions in different organs of wheat. J. Exp. Bot. 49: 1119-1127. http://dx.doi.org/10.1093/jexbot/49.324.1119 Mitchell DO, Onco MD and Duncan RD (1997). The World Food Outlook. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511582363 Peng ZS (1998). C-band analysis on the dwarf landrace of tetraploid wheat. Seed 1: 9-12. Peng ZS, Liu DC, Yen C and Yang JL (1998). Crossability of tetraploid wheat landraces native to Sichuan, Shaanxi, Gansu and Xinjiang provinces, China with rye. Genet. Res. Crop Evol. 45: 57-62. http://dx.doi.org/10.1023/A:1008669429068 Peng ZS, Su ZX and Cheng KC (1999). Characterization of dwarf trait in the tetraptoid wheat landrace, Aiganfanmai. Wheat Inf. Serv. 89: 7-12. Rajaram S (2002). Prospects and Promise of Wheat Breeding in the 21st Century. In: Advance of Wheat Breeding in China (He ZH and Zhang AM, eds.). China Science and Technology Press, Beijing, 38-53. Rajaram S, Singh RP, Van M and Ginkel M (1997). Breeding Wheat for Wide Adaptation, Rust Resistance and Drought Tolerance. In: Crop Improvement for the 21st Century (Kang MS, ed.). Research Signpost, Kerala, 139-163. Reitz LP and Salmon SC (1968). Origin, history and use of Norin 10 wheat. Crop Sci. 8: 686-689. http://dx.doi.org/10.2135/cropsci1968.0011183X000800060014x Röder MS, Korzun V, Wendehake K, Plaschke J, et al. (1998). A microsatellite map of wheat. Genetics 149: 2007-2023. PMid:9691054    PMCid:1460256 Ruttan VW (1993). Research to Meet Crop Production Needs Into the 21st Century. In: International Crop Science Congress I (Buxton DR, ed.). Chinese Students and Scholars Association, Madision, 3-10. Singh RP, Huerta-Espino J, Rajaram S and Crossa J (2001). Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119: 241-244. http://dx.doi.org/10.1023/A:1017541805454 Somers DJ, Isaac P and Edwards K (2004). A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109: 1105-1114. http://dx.doi.org/10.1007/s00122-004-1740-7 PMid:15490101 Watanabe N (2004). Triticum polonicum IC12196: a possible alternative source of GA~3-insensitive semi-dwarfism. Cereal Res. Commun. 32: 429-434. Wenzel CL, Chandler PM, Cunningham RB and Passioura JB (1997). Characterization of the leaf epidermis of barley (Hordeum vulgare L. ‘Himalaya’). Ann. Bot. 79: 41-46. http://dx.doi.org/10.1006/anbo.1996.0300 Yang TZ, Zhang XK, Liu HW and Wang ZH (1993). Chromosomal arm location of a dominant dwarfing gene Rht21 in common wheat variety-XN0004. Acta Univ. Agr. Boreali-Occidentalis Sin. 21: 13-17.

Pages