Publications

Found 32 results
Filters: Author is X. Zhang  [Clear All Filters]
2016
C. L. Zou, Zheng, Y., Wang, P., Zhang, X., Wang, Y. - H., Liu, Z. Y., Feng, H., Zou, C. L., Zheng, Y., Wang, P., Zhang, X., Wang, Y. - H., Liu, Z. Y., and Feng, H., Fine mapping and characterization of the or gene in Chinese cabbage (Brassica rapa L. ssp pekinensis), vol. 15, p. -, 2016.
C. L. Zou, Zheng, Y., Wang, P., Zhang, X., Wang, Y. - H., Liu, Z. Y., Feng, H., Zou, C. L., Zheng, Y., Wang, P., Zhang, X., Wang, Y. - H., Liu, Z. Y., and Feng, H., Fine mapping and characterization of the or gene in Chinese cabbage (Brassica rapa L. ssp pekinensis), vol. 15, p. -, 2016.
J. F. Zhu, Zhang, X., Ling, L., Zhu, J. F., Zhang, X., and Ling, L., Molecular characterization of a Han Chinese family with essential hypertension, vol. 15, p. -, 2016.
J. F. Zhu, Zhang, X., Ling, L., Zhu, J. F., Zhang, X., and Ling, L., Molecular characterization of a Han Chinese family with essential hypertension, vol. 15, p. -, 2016.
X. X. Liu, Agudamu, A., Zhang, X., Wei, Y., Song, X., Li, Y. L., Liu, X. X., Agudamu, A., Zhang, X., Wei, Y., Song, X., and Li, Y. L., Pharmacology of a traditional Chinese herb, Shuangren-Anshen capsule, in a hemorrhage mouse model by using an orthogonal array design, vol. 15, p. -, 2016.
X. X. Liu, Agudamu, A., Zhang, X., Wei, Y., Song, X., Li, Y. L., Liu, X. X., Agudamu, A., Zhang, X., Wei, Y., Song, X., and Li, Y. L., Pharmacology of a traditional Chinese herb, Shuangren-Anshen capsule, in a hemorrhage mouse model by using an orthogonal array design, vol. 15, p. -, 2016.
Y. M. Ding, Zhu, J. Y., Zhang, S. J., Zhang, S. S., Wang, C., Wang, L. L., Zhang, X., Ding, Y. M., Zhu, J. Y., Zhang, S. J., Zhang, S. S., Wang, C., Wang, L. L., and Zhang, X., Tetradecyl 2,3-dihydroxybenzoate promotes functional recovery after spinal cord injury in adult rats, vol. 15, p. -, 2016.
Y. M. Ding, Zhu, J. Y., Zhang, S. J., Zhang, S. S., Wang, C., Wang, L. L., Zhang, X., Ding, Y. M., Zhu, J. Y., Zhang, S. J., Zhang, S. S., Wang, C., Wang, L. L., and Zhang, X., Tetradecyl 2,3-dihydroxybenzoate promotes functional recovery after spinal cord injury in adult rats, vol. 15, p. -, 2016.
2015
X. F. Ren, Diao, Z. Z., Xi, Y. M., Qi, Z. H., Ren, S., Liu, Y. J., Yang, D. L., Zhang, X., and Yuan, S. L., Adeno-associated virus-mediated BMP-7 and SOX9 in vitro co-transfection of human degenerative intervertebral disc cells, vol. 14, pp. 3736-3744, 2015.
Q. Wang, Li, X. L., Xu, X. G., Shi, B. Y., Zhang, Z. M., Li, Z. L., Han, Y., Zhou, W. Q., Chen, C. Q., Cai, M., and Zhang, X., Bortezomib-based treatment of acute antibody-mediated rejection: a case report, vol. 14, pp. 17951-17958, 2015.
S. A. Zhang, Wu, Z. X., Zhang, X., Zeng, Z. Y., and Li, D. L., Circulating B7-H4 in serum predicts prognosis in patients with hepatocellular carcinoma, vol. 14, pp. 13041-13048, 2015.
Y. Xin, Lv, J. - Q., Wang, Y. - Z., Zhang, J., and Zhang, X., Effect of all-trans retinoic acids (ATRA) on the expression of α-smooth muscle actin (α-SMA) in the lung tissues of rats with pulmonary arterial hypertension (PAH), vol. 14, pp. 14308-14313, 2015.
C. Wu, Zhao, X., Zhang, X., Liu, S., Zhao, H., and Chen, Y., Effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and related gene expression, vol. 14, pp. 6387-6394, 2015.
D. X. Chen, Li, L. Y., Zhang, X., and Wang, Y., Genetic structure and genetic diversity of single-variety Lonicera macranthoides populations in China, as indicated by SCoT markers, vol. 14, pp. 8058-8067, 2015.
L. Zhang, Guo, X. Q., Chu, J. F., Zhang, X., Yan, Z. R., and Li, Y. Z., Potential hippocampal genes and pathways involved in Alzheimer’s disease: a bioinformatic analysis, vol. 14, pp. 7218-7232, 2015.
X. Zhang, Zheng, C., Zhou, Z. H., Li, M., Gao, Y. T., Jin, S. G., Sun, X. H., and Gao, Y. Q., Relationship between HLA-DP gene polymorphisms and the risk of hepatocellular carcinoma: a meta-analysis, vol. 14, pp. 15553-15563, 2015.
2014
X. Zhang, Zhang, F., Zhao, H., Guan, Z., Chen, S., Jiang, J., Fang, W., and Chen, F., Comparative analysis of genetic diversity among species of Chrysanthemum and its related genera using inter-simple sequence repeat and sequence-related amplified polymorphism markers, vol. 13, pp. 8469-8479, 2014.
L. Z. Hua, Wu, Y. Z., Bai, F. F., William, K. K., Feng, Z. X., Liu, M. J., Yao, J. T., Zhang, X., and Shao, G. Q., Comparative analysis of mucosal immunity to Mycoplasma hyopneumoniae in Jiangquhai porcine lean strain and DLY piglets, vol. 13, pp. 5199-5206, 2014.
Q. J. Chao, Li, Y. D., Geng, X. X., Zhang, L., Dai, X., Zhang, X., Li, J., and Zhang, H. J., Complete mitochondrial genome sequence of Marmota himalayana (Rodentia: Sciuridae) and phylogenetic analysis within Rodentia, vol. 13, pp. 2739-2751, 2014.
Z. Gui, Liu, H. Q., Wang, Y., Yuan, Q. H., Xin, N., Zhang, X., Li, X. L., Pi, Y. S., and Gao, J. M., Detection of the genetic variation of polygalacturonase-inhibiting protein gene 2 in autotetraploid alfalfa (Medicago sativa) using an improved SSCP technique, vol. 13, pp. 10184-10193, 2014.
Y. Wang, Mcdonald, J. P., Liu, Y., Pan, K., Zhang, X., and Hu, R., Dynamic alterations of the tongue in obstructive sleep apnea-hypopnea syndrome during sleep: analysis using ultrafast MRI, vol. 13, pp. 4552-4563, 2014.
H. Zhang, Zhang, X., Ding, X., Cao, W., Qu, L., and Zhou, G., Effect of secondary lymphoid tissue chemokine suppression on experimental ulcerative colitis in mice, vol. 13, pp. 3337-3345, 2014.
H. Zhang, Li, J., Zhang, Y., Sun, M., Zhao, P., Zhang, G., Jin, C., Sun, L., He, M., Wang, B., and Zhang, X., ERCC1 mRNA expression is associated with the clinical outcome of non-small cell lung cancer treated with platinum-based chemotherapy, vol. 13, pp. 10215-10222, 2014.
D. X. Chen, Li, L. Y., Zhang, X., Wang, Y., and Zhang, Z., Genetic diversity and population structure of wild Dipsacus asperoides in China as indicated by ISSR markers, vol. 13, pp. 6340-6349, 2014.
X. S. Xing, Zhu, H. W., Chen, C., Wang, S. S., Luo, Y., and Zhang, X., Mutation analysis of a Chinese pedigree with triphalangeal thumb-polysyndactyly syndrome, vol. 13, pp. 246-254, 2014.
2013
D. - X. Chen, Li, L. - Y., Zhang, X., Wang, Y., and Zhang, Z., Genetic diversity in wild Dipsacus chinensis populations from China based on ISSR markers, vol. 12, pp. 1205-1213, 2013.
Ai TM, Chen HB, Cheng ZM and Wang YS (1990). A revision of genus Dipsacus in China. Bull. Bot. Res. 10: 1-18.   Chen DX, Li LY, Peng R and Qu XY (2006). Genetic diversity of Coptis chinensis germplasm based on ISSR analysis. Zhongguo Zhong Yao Za Zhi 31: 1937-1940. PMid:17348182   Chen H and Ai T (1997). Medicinal plant resources of Dipsacaceae in China. Zhongguo Zhong Yao Za Zhi 22: 649-52, 702.   Editorial Committee of Flora of China & Chinese Academy of Sciences (1986). Flora Reipublicae Popularis Sinicae. Tomus 73-1. Science Press, Beijing.   Feng XF, Ai TM and Xu HN (2000). A study on pollen morphology of Dipsacus. Zhongguo Zhong Yao Za Zhi 25: 394-401. PMid:12515219   Hamrick JL and Godt MJ (1990). Allozyme Diversity in Plant Species. In: Plant Population Genetics, Breeding and Genetic Resources (Brown AHD, Clegg MT, Kahler AL and Weir BS, eds.). Sinauer Associates Inc., Sunderland, 43-63.   Institutum Botanicum Beijingense Academiae Sinicae Edita (1975). Iconographia Cormophytorum Sinicorum. Tomus IV: 340. Science Press, Beijing.   Li JM, Jin ZX and Zhong ZC (2004). RAPD analysis of genetic diversity of Sargentodoxa cuneam at different altitude and the influence of environmental factors. Acta Ecol. Sin. 24: 567-573.   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   O'Hanlon PC, Peakall R and Briese DT (2000). A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res. 40: 239-254. http://dx.doi.org/10.1046/j.1365-3180.2000.00191.x   Sagnard F, Barberot C and Fady D (2002). Structure of genetic diversity in Abies alba Mil1. from southwestern Alps: multivariate analysis of adaptive and nonadaptive traits for conservation in France. Forest Ecol. Manag. 157: 175-189. http://dx.doi.org/10.1016/S0378-1127(00)00664-2   Senapati SK, Aparajita S and Rout GR (2011). Identification of species-diagnostic inter simple sequence repeat markers for ten Phyllanthus species. Z. Naturforsch. C. 66: 167-172. http://dx.doi.org/10.5560/ZNC.2011.66c0167 PMid:21630591   Shen J, Ding XY, Liu DL, Ding G, et al. (2006). Intersimple sequence repeats (ISSR) molecular fingerprinting markers for authenticating populations of Dendrobium officinale Kimura et Migo. Biol. Pharm. Bull. 29: 420-422. http://dx.doi.org/10.1248/bpb.29.420 PMid:16508138   Solhrig OT (1991). From Genes to Ecosystems: A Research Agenda for Biodiversity. International Union of Biological Sciences, Paris.   Song Z, Li X, Wang H and Wang J (2010). Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138: 241-249. http://dx.doi.org/10.1007/s10709-009-9416-5 PMid:19844793   Wright S (1951). The genetic structure of populations. Ann. Eugen. J. 15: 323-354. http://dx.doi.org/10.1111/j.1469-1809.1949.tb02451.x   Yang S, Chen C, Zhao Y, Xi W, et al. (2011). Association between chemical and genetic variation of wild and cultivated populations of Scrophularia ningpoensis Hemsl. Planta Med. 77: 865-871. http://dx.doi.org/10.1055/s-0030-1250601 PMid:21157679   Yu M, Ma B, Luo X, Zheng L, et al. (2008). Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Curr. Microbiol. 56: 240-245. http://dx.doi.org/10.1007/s00284-007-9067-7 PMid:18180993   Zhang F, Lv Y, Dong H and Guo S (2010). Analysis of genetic stability through intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus Hayata, a medicinal plant. Biol. Pharm. Bull. 33: 384-388. http://dx.doi.org/10.1248/bpb.33.384 PMid:20190397   Zietkiewicz E, Rafalski A and Labuda D (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183. http://dx.doi.org/10.1006/geno.1994.1151 PMid:8020964
M. Wang, Liu, C., Zhang, Y., Hao, Y., Zhang, X., and Zhang, Y. M., Protein interaction and microRNA network analysis in osteoarthritis meniscal cells, vol. 12, pp. 738-746, 2013.
Abramson SB and Attur M (2009). Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11: 227. http://dx.doi.org/10.1186/ar2655 PMid:19519925 PMCid:2714096   Barre PE, Redini F, Boumediene K, Vielpeau C, et al. (2000). Semiquantitative reverse transcription-polymerase chain reaction analysis of syndecan-1 and -4 messages in cartilage and cultured chondrocytes from osteoarthritic joints. Osteoarthritis Cartilage 8: 34-43. http://dx.doi.org/10.1053/joca.1999.0286 PMid:10607497   Gobezie R, Kho A, Krastins B, Sarracino DA, et al. (2007). High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res. Ther. 9: R36. http://dx.doi.org/10.1186/ar2172 PMid:17407561 PMCid:1906814   Hardingham T (2008). Extracellular matrix and pathogenic mechanisms in osteoarthritis. Curr. Rheumatol. Rep. 10: 30-36. http://dx.doi.org/10.1007/s11926-008-0006-9 PMid:18457609   Hopwood B, Tsykin A, Findlay DM and Fazzalari NL (2007). Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res. Ther. 9: R100. http://dx.doi.org/10.1186/ar2301 PMid:17900349 PMCid:2212557   Huang dW, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.   Ikeda S, He A, Kong SW, Lu J, et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell Biol. 29: 2193-2204. http://dx.doi.org/10.1128/MCB.01222-08 PMid:19188439 PMCid:2663304   Ivanov AI and Romanovsky AA (2006). Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life 58: 389-394. http://dx.doi.org/10.1080/15216540600756004 PMid:16801213   Jiang Q, Wang Y, Hao Y, Juan L, et al. (2009). miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37: D98-104. http://dx.doi.org/10.1093/nar/gkn714 PMid:18927107 PMCid:2686559   Joos H, Albrecht W, Laufer S, Reichel H, et al. (2008). IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. Mol. Med. 14: 150-159. http://dx.doi.org/10.2119/2007-00138.Joos PMid:18224250 PMCid:2213891   Kawahara C, Forster T, Chapman K, Carr A, et al. (2005). Genetic association analysis of the IGFBP7, ADAMTS3, and IL8 genes as the potential osteoarthritis susceptibility that maps to chromosome 4q. Ann. Rheum. Dis. 64: 474-476. http://dx.doi.org/10.1136/ard.2004.027342 PMid:15708897 PMCid:1755421   Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, et al. (2009). Human Protein Reference Database - 2009 update. Nucleic Acids Res. 37: D767-D772. http://dx.doi.org/10.1093/nar/gkn892 PMid:18988627 PMCid:2686490   Liu Y, Patel S, Nibbe R, Maxwell S, et al. (2011). Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea. Pac. Symp. Biocomput. 14-25. PMid:21121029   Lu M, Zhang Q, Deng M, Miao J, et al. (2008). An analysis of human microRNA and disease associations. PLoS One 3: e3420. http://dx.doi.org/10.1371/journal.pone.0003420 PMid:18923704 PMCid:2559869   Luyten FP, Tylzanowski P and Lories RJ (2009). Wnt signaling and osteoarthritis. Bone 44: 522-527. http://dx.doi.org/10.1016/j.bone.2008.12.006 PMid:19136083   Martel-Pelletier J (2004). Pathophysiology of osteoarthritis. Osteoarthritis. Cartilage. 12 (Suppl A): S31-S33. http://dx.doi.org/10.1016/j.joca.2003.10.002 PMid:14698638   Martel-Pelletier J, Di Battista JA, Lajeunesse D and Pelletier JP (1998). IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm. Res. 47: 90-100. http://dx.doi.org/10.1007/s000110050288 PMid:9562333   Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, et al. (2009). The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37: D155-D158. http://dx.doi.org/10.1093/nar/gkn809 PMid:18957447 PMCid:2686456   Poulou M, Kaliakatsos M, Tsezou A, Kanavakis E, et al. (2008). Association of the CALM1 core promoter polymorphism with knee osteoarthritis in patients of Greek origin. Genet. Test. 12: 263-265. http://dx.doi.org/10.1089/gte.2007.0114 PMid:18452398   Rousseau JC and Delmas PD (2007). Biological markers in osteoarthritis. Nat. Clin. Pract. Rheumatol. 3: 346-356. http://dx.doi.org/10.1038/ncprheum0508 PMid:17538566   Salminen-Mankonen H, Saamanen AM, Jalkanen M, Vuorio E, et al. (2005). Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis. Scand. J. Rheumatol. 34: 469-474. http://dx.doi.org/10.1080/03009740500304338 PMid:16393771   Sarzi-Puttini P, Cimmino MA, Scarpa R, Caporali R, et al. (2005). Osteoarthritis: an overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 35: 1-10. http://dx.doi.org/10.1016/j.semarthrit.2005.01.013 PMid:16084227   Shahrara S, Volin MV, Connors MA, Haines GK, et al. (2002). Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res. 4: 201-208. http://dx.doi.org/10.1186/ar407 PMid:12010571 PMCid:111023   Smyth GK (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet Mol. Biol. 3: Article3.   Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, et al. (2011). The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39: D698-D704. http://dx.doi.org/10.1093/nar/gkq1116 PMid:21071413 PMCid:3013707   Subramanian A, Sharma AK, Banerjee D, Jiang WG, et al. (2007). Evidence for a tumour suppressive function of IGF1- binding proteins in human breast cancer. Anticancer Res. 27: 3513-3518. PMid:17972510   Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, et al. (2010). Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet. Disord. 11: 19. http://dx.doi.org/10.1186/1471-2474-11-19 PMid:20109188 PMCid:2828422   Todoerti K, Barbui V, Pedrini O, Lionetti M, et al. (2010). Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 95: 260-269. http://dx.doi.org/10.3324/haematol.2009.012088 PMid:19713220 PMCid:2817029   Valdes AM, Loughlin J, Oene MV, Chapman K, et al. (2007). Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 56: 137-146. http://dx.doi.org/10.1002/art.22301 PMid:17195216   Wu X and Song Y (2011). Preferential regulation of miRNA targets by environmental chemicals in the human genome. BMC Genomics 12: 244. http://dx.doi.org/10.1186/1471-2164-12-244 PMid:21592377 PMCid:3118786   Xiao F, Zuo Z, Cai G, Kang S, et al. (2009). miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37: D105-D110. http://dx.doi.org/10.1093/nar/gkn851 PMid:18996891 PMCid:2686554   Yang JH, Li JH, Shao P, Zhou H, et al. (2011). starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39: D202-D209. http://dx.doi.org/10.1093/nar/gkq1056 PMid:21037263 PMCid:3013664
2012
M. Y. Zhao, Xue, Y., Zhao, Z. Q., Li, F. J., Fan, D. P., Wei, L. L., Sun, X. J., Zhang, X., Wang, X. C., Zhang, Y. X., and Li, J. C., Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population, vol. 11, pp. 3425-3431, 2012.
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Ding S, Li L and Zhu X (2008). Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum. Immunol. 69: 129-133. http://dx.doi.org/10.1016/j.humimm.2007.11.006 PMid:18361939   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Dong H, Jiang DP, Zhou J, et al. (2008). Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit. Care Med. 36: 2274-2280. http://dx.doi.org/10.1097/CCM.0b013e318180b1ed PMid:18596635   Härtel C, Rupp J, Hoegemann A, Bohler A, et al. (2008). 159C>T CD14 genotype - functional effects on innate immune responses in term neonates. Hum. Immunol. 69: 338-443. http://dx.doi.org/10.1016/j.humimm.2008.04.011 PMid:18571004   Hoheisel G, Zheng L, Teschler H, Striz I, et al. (1995). Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 108: 1614-1616. http://dx.doi.org/10.1378/chest.108.6.1614 PMid:7497770   Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, et al. (1998). Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect Dis. 178: 1839-1842. http://dx.doi.org/10.1086/314492 PMid:9815247   Kang HJ, Choi YM, Chae SW, Woo JS, et al. (2006). Polymorphism of the CD14 gene in perennial allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 70: 2081-2085. http://dx.doi.org/10.1016/j.ijporl.2006.07.024 PMid:16950521   Lawn SD, Labeta MO, Arias M, Acheampong JW, et al. (2000). Elevated serum concentrations of soluble CD14 in HIV-and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin. Exp. Immunol. 120: 483-487. http://dx.doi.org/10.1046/j.1365-2249.2000.01246.x PMid:10844527 PMCid:1905566   Liang XH, Cheung W, Heng CK, Liu JJ, et al. (2006). CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet. Genomics 16: 229-236. http://dx.doi.org/10.1097/01.fpc.0000197466.14340.0f PMid:16538169   Liu CP, Li XG, Lou JT, Xue Y, et al. (2009). Association analysis of the PHOX2B gene with Hirschsprung disease in the Han Chinese population of Southeastern China. J. Pediatr. Surg. 44: 1805-1811. http://dx.doi.org/10.1016/j.jpedsurg.2008.12.009 PMid:19735829   Manaster C, Zheng W, Teuber M, Wachter S, et al. (2005). InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26: 11-19. http://dx.doi.org/10.1002/humu.20188 PMid:15931688   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Shams H, Wizel B, Lakey DL, Samten B, et al. (2003). The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63-69. http://dx.doi.org/10.1016/S0928-8244(03)00039-7   Sugawara I, Yamada H, Li C, Mizuno S, et al. (2003a). Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327-336. PMid:12825894   Sugawara I, Yamada H, Mizuno S, Takeda K, et al. (2003b). Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47: 841-847. PMid:14638995   Triantafilou M and Triantafilou K (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304. http://dx.doi.org/10.1016/S1471-4906(02)02233-0   Ulevitch RJ and Tobias PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437-457. http://dx.doi.org/10.1146/annurev.iy.13.040195.002253 PMid:7542010   Vercelli D, Baldini M and Martinez F (2001). The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int. Arch. Allergy Immunol. 124: 20-24. http://dx.doi.org/10.1159/000053658 PMid:11306916   Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155. http://dx.doi.org/10.1038/sj.gene.6364274 PMid:16437124   Zhang G, Goldblatt J and LeSouef PN (2008). Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63: 1411-1417. http://dx.doi.org/10.1111/j.1398-9995.2008.01804.x PMid:18925877
Y. W. Wang, Han, W. T., Jiang, M., Lu, C. X., Li, X. F., Zhang, X., and Li, J. X., A novel mutation of the MFN2 gene in a Chinese family with Charcot-Marie-Tooth disease, vol. 11. pp. 1454-1459, 2012.
Banchs I, Casasnovas C, Montero J, Martinez-Matos JA, et al. (2008). Two Spanish families with Charcot-Marie-Tooth type 2A: clinical, electrophysiological and molecular findings. Neuromuscul. Disord. 18: 974-978.http://dx.doi.org/10.1016/j.nmd.2008.09.006PMid:18996695Barisic N, Claeys KG, Sirotkovic-Skerlev M, Lofgren A, et al. (2008). Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann. Hum. Genet. 72: 416-441.http://dx.doi.org/10.1111/j.1469-1809.2007.00412.xPMid:18215208Cartoni R and Martinou JC (2009). Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp. Neurol. 218: 268-273.http://dx.doi.org/10.1016/j.expneurol.2009.05.003PMid:19427854Chung KW, Kim SB, Park KD, Choi KG, et al. (2006). Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129: 2103-2118.http://dx.doi.org/10.1093/brain/awl174PMid:16835246Engelfried K, Vorgerd M, Hagedorn M, Haas G, et al. (2006). Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med. Genet. 7: 53.http://dx.doi.org/10.1186/1471-2350-7-53PMid:16762064 PMCid:1524942Honda S, Aihara T, Hontani M, Okubo K, et al. (2005). Mutational analysis of action of mitochondrial fusion factor mitofusin-2. J. Cell Sci. 118: 3153-3161.http://dx.doi.org/10.1242/jcs.02449PMid:15985463Kijima K, Numakura C, Izumino H, Umetsu K, et al. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot- Marie-Tooth neuropathy type 2A. Hum. Genet. 116: 23-27.http://dx.doi.org/10.1007/s00439-004-1199-2PMid:15549395Koshiba T, Detmer SA, Kaiser JT, Chen H, et al. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305: 858-862.http://dx.doi.org/10.1126/science.1099793PMid:15297672Nicolaou P, Zamba-Papanicolaou E, Koutsou P, Kleopa KA, et al. (2010). Charcot-Marie-Tooth disease in Cyprus: epidemiological, clinical and genetic characteristics. Neuroepidemiology 35: 171-177.http://dx.doi.org/10.1159/000314351PMid:20571287Rojo M, Legros F, Chateau D and Lombes A (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115: 1663-1674.PMid:11950885Santel A and Fuller MT (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114: 867-874.PMid:11181170Verhoeven K, Claeys KG, Zuchner S, Schroder JM, et al. (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129: 2093-2102.http://dx.doi.org/10.1093/brain/awl126PMid:16714318Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36: 449-451.http://dx.doi.org/10.1038/ng1341PMid:15064763
X. Liu, Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., Ma, P. P., Zhang, Y., Wang, C. Y., Geng, F. J., Qin, C. H., Liu, L., Shi, W. H., Wang, Y. C., and Yu, Y., Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle, vol. 11, pp. 2569-2577, 2012.
Amara K, Ziadi S, Hachana M, Soltani N, et al. (2010). DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101: 1722-1730. http://dx.doi.org/10.1111/j.1349-7006.2010.01569.x PMid:20398054   Barres R and Zierath JR (2011). DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 93: 897S-900. http://dx.doi.org/10.3945/ajcn.110.001933 PMid:21289222   de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, et al. (2011). Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 22: 1-12. http://dx.doi.org/10.1007/s10552-010-9659-6 PMid:20960050 PMCid:3002163   Fan YY, Zan LS, Wang HB and Yang YJ (2010). Study on the relationship between polymorphism of PLIN gene and carcass and meat quality traits in Qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.   Fraga MF, Ballestar E, Paz MF, Ropero S, et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U. S. A. 102: 10604-10609. http://dx.doi.org/10.1073/pnas.0500398102 PMid:16009939 PMCid:1174919   Guo X, Liu X, Xu X, Wu M, et al. (2012). The expression levels of DNMT3a/3b and their relationship with meat quality in beef cattle. Mol. Biol. Rep. 39: 5473-5479. http://dx.doi.org/10.1007/s11033-011-1349-2 PMid:22193622   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, et al. (2009). Genetic variation in healthy oldest-old. PLoS One 4: e6641. http://dx.doi.org/10.1371/journal.pone.0006641 PMid:19680556 PMCid:2722017   Hoey AJ, Reich MM, Davis G, Shorthose R, et al. (1995). Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J. Anim. Sci. 73: 3281-3286. PMid:8586585   Ji AG, Zhou ZK, Zhang LP, Yang RJ, et al. (2009). PON1 gene SNPs and association with growth and carcass traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 122-128.   Kamei Y, Suganami T, Ehara T, Kanai S, et al. (2010). Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity 18: 314-321. http://dx.doi.org/10.1038/oby.2009.246 PMid:19680236   Kurita S, Higuchi H, Saito Y, Nakamoto N, et al. (2010). DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci. 101: 1431-1439. http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x PMid:20398055   Li WF, Yang RJ, Gan QF, Zhang LP, et al. (2009). Polymorphism of PRKAG3 gene and Its association with carcass and meat quality traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 1106-1111.   Liu Y, Li K, Liu WJ, Wang JF, et al. (2009). Study on the effect of down-regulation of DNMT1 on cell proliferation, metastasis ability of esophageal squamous cell carcinoma cell line EC9706 cells and its related mechanisms. China Oncol. 19: 826-830.   Maier S and Olek A (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr. 132: 2440S-2443S. PMid:12163708   Okano M, Bell DW, Haber DA and Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-6   Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085. PMid:12542147   Tidball JG and Spencer MJ (2002). Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol. 545: 819-828. http://dx.doi.org/10.1113/jphysiol.2002.024935 PMid:12482888 PMCid:2290726   Turek-Plewa J and Jagodzinski PP (2005). The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10: 631-647. PMid:16341272   Wang X, Zhu H, Snieder H, Su S, et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 8: 87. http://dx.doi.org/10.1186/1741-7015-8-87 PMid:21176133 PMCid:3016263   Yu Y, Zhang H, Tian F, Zhang W, et al. (2008). An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines. PLoS One 3: e2672. http://dx.doi.org/10.1371/journal.pone.0002672 PMid:18648519 PMCid:2481300
2011
Y. Lu, Xu, W. H., Xie, Y. X., Zhang, X., Pu, J. J., Qi, Y. X., and Li, H. P., Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas, vol. 10, pp. 3098-3108, 2011.
Aarts MG, te Lintel HB, Holub EB, Beynon JL, et al. (1998). Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant Microbe Interact. 11: 251-258. http://dx.doi.org/10.1094/MPMI.1998.11.4.251 PMid:9530866 Agrios GN (1997). Plant Pathology. 4th edn. Academic Press, New York. Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694    PMCid:146917 Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, et al. (1997). Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9: 641-651. PMid:9144966    PMCid:156945 Bai J, Pennill LA, Ning J, Lee SW, et al. (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12: 1871-1884. http://dx.doi.org/10.1101/gr.454902 PMid:12466291    PMCid:187567 Bailey TL and Elkan C (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2: 28-36. PMid:7584402 Bent AF, Kunkel BN, Dahlbeck D, Brown KL, et al. (1994). RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860. http://dx.doi.org/10.1126/science.8091210 PMid:8091210 Carlier J, Fouré E, Gauhl F and Jones DR (2000). Fungal Diseases of the Foliage. In: Diseases of Banana Abacá and Enset (Jones DR, ed.). CABI Publishing, Wallingford, 37-141. Dixon MS, Jones DA, Keddie JS, Thomas CM, et al. (1996). The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451-459. http://dx.doi.org/10.1016/S0092-8674(00)81290-8 Eddy SR (2007). HMMER: Profile Hidden Markov Models for Biological Sequence Analysis. Available at [http://hmmer.janelia.org]. Accessed March 15, 2010. FAO (2005). (Food and Agricultural Organization). Available at [http://www.fao.org/lim500/nphwrap.pi?productioncrops. primary&Domain=SUA&]. Accessed December 3, 2009. Feuillet C, Schachermayr G and Keller B (1997). Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J. 11: 45-52. http://dx.doi.org/10.1046/j.1365-313X.1997.11010045.x PMid:9025301 Grant MR, Godiard L, Straube E, Ashfield T, et al. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843-846. http://dx.doi.org/10.1126/science.7638602 PMid:7638602 Jeong SC, Hayes AJ, Biyashev RM and Saghai MMA (2001). Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal “hotspot” for disease resistance genes in soybean. Theor. Appl. Genet. 103: 406-414. http://dx.doi.org/10.1007/s001220100567 Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, et al. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793. http://dx.doi.org/10.1126/science.7973631 PMid:7973631 Jones DR (2000). Introduction of Banana. In: Diseases of Banana, Abacá and Enset (Jones DR, ed.). CABI Publishing, Wallingford, 1-36. Joshi RK, Mohanty S, Subudhi E and Nayak S (2010). Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama). Genet. Mol. Res. 9: 1796-1806. http://dx.doi.org/10.4238/vol9-3gmr910 PMid:20830672 Lawrence GJ, Finnegan EJ, Ayliffe MA and Ellis JG (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7: 1195-1206. PMid:7549479    PMCid:160944 Leister D, Kurth J, Laurie DA, Yano M, et al. (1999). RFLP- and physical mapping of resistance gene homologues in rice (O. sative) and Barley (H. vulgare). Theor. Appl. Genet. 98: 509-520. http://dx.doi.org/10.1007/s001220051099 Marín DH, Romero RA, Guzmán M and Sutton TB (2003). Black sigatoka: an increasing threat to banana cultivation. Plant Disease 87: 208-222. http://dx.doi.org/10.1094/PDIS.2003.87.3.208 Martín GB, Brommonschenkel SH, Chunwongse J, Frary A, et al. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436. http://dx.doi.org/10.1126/science.7902614 PMid:7902614 Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, et al. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20: 317-332. http://dx.doi.org/10.1046/j.1365-313X.1999.t01-1-00606.x PMid:10571892 Meyers BC, Morgante M and Michelmore RW (2002). TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. 32: 77-92. http://dx.doi.org/10.1046/j.1365-313X.2002.01404.x PMid:12366802 Michelmore R (2000). Genomic approaches to plant disease resistance. Curr. Opin. Plant Biol. 3: 125-131. http://dx.doi.org/10.1016/S1369-5266(99)00050-3 Michelmore RW and Meyers BC (1998). Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8: 1113-1130. PMid:9847076 Noel L, Moores TL, van Der Biezen EA, Parniske M, et al. (1999). Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11: 2099-2112. PMid:10559437    PMCid:144120 Ori N, Eshed Y, Paran I, Presting G, et al. (1997). The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9: 521-532. PMid:9144960    PMCid:156936 Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. PMid:8902363 Pan Q, Wendel J and Fluhr R (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50: 203-213. PMid:10754062 Pei X, Li S, Jiang Y, Zhang Y, et al. (2007). Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Sci. 172: 1166-1174. http://dx.doi.org/10.1016/j.plantsci.2007.02.019 Penuela S, Danesh D and Young ND (2002). Targeted isolation, sequence analysis, and physical mapping of nonTIR NBS-LRR genes in soybean. Theor. Appl. Genet. 104: 261-272. http://dx.doi.org/10.1007/s00122-001-0785-0 Peraza-Echeverria S, James-Kay A, Canto-Canche B and Castillo-Castro E (2007). Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Mol. Genet. Genom. 278: 443-453. http://dx.doi.org/10.1007/s00438-007-0262-9 PMid:17587056 Robert NGM, David JB, Franc CB, Candice MRS, et al. (2008). Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acaminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol. 8: 15. http://dx.doi.org/10.1186/1471-2229-8-15 PMid:18234103    PMCid:2262081 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, et al. (1996). Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 123-133. http://dx.doi.org/10.1016/S0092-8674(00)80083-5 Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor, USA, Cold Spring Harbor Laboratory, New York. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768. http://dx.doi.org/10.1126/science.274.5288.765 PMid:8864112 Song WY, Wang GL, Chen LL, Kim HS, et al. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806. http://dx.doi.org/10.1126/science.270.5243.1804 PMid:8525370 Staden R (1996). The Staden sequence analysis package. Mol. Biotechnol. 5: 233-241. http://dx.doi.org/10.1007/BF02900361 PMid:8837029 Tai TH, Dahlbeck D, Clark ET, Gajiwala P, et al. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. U. S. A. 96: 14153-14158. http://dx.doi.org/10.1073/pnas.96.24.14153 Thevissen K, Cammue BP, Lemaire K, Winderickx J, et al. (2000). A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc. Natl. Acad. Sci. U. S. A. 97: 9531-9536. http://dx.doi.org/10.1073/pnas.160077797 PMid:10931938 van Der Biezen EA and Jones JD (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8: R226-R227. http://dx.doi.org/10.1016/S0960-9822(98)70145-9 Wang ZX, Yano M, Yamanouchi U, Iwamoto M, et al. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19: 55-64. http://dx.doi.org/10.1046/j.1365-313X.1999.00498.x PMid:10417726 Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, et al. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115. http://dx.doi.org/10.1016/0092-8674(94)90283-6 Wiame L, Swennen R and Sági L (2000). PCR-based cloning of candidate disease resistance genes from banana (Musa acuminata). Acta Hortic. 521: 51-57. Xie YB, Tang DZ, Zhang YS and Li WM (1998). Isolation of homologous sequences of R gene from rice. Chin. Sci. Bull. 43: 277-281. Yamanashi Y, Okada M, Semba T, Yamori T, et al. (1993). Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated signaling. Proc. Natl. Acad. Sci. U. S. A. 90: 3631-3635. http://dx.doi.org/10.1073/pnas.90.8.3631 Yoshimura S, Yamanouchi U, Katayose Y, Toki S, et al. (1998). Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. 95: 1663-1668. http://dx.doi.org/10.1073/pnas.95.4.1663