Publications
Found 75 results
Filters: Author is H. Wang [Clear All Filters]
“Expression analysis of Gli1 and Gli2 in different tissues and muscle-derived cells of Qinchuan cattle”, vol. 13, pp. 8767-8775, 2014.
, “Increased serum ADAMTS-4 in knee osteoarthritis: a potential indicator for the diagnosis of osteoarthritis in early stages”, vol. 13, pp. 9642-9649, 2014.
, “Isolation and characterization of polymorphic microsatellite loci of the Chinese muntjac (Muntiacus reevesi)”, vol. 13, pp. 1905-1908, 2014.
, “Mutation screening of TSC1 and TSC2 genes in Chinese Han children with tuberous sclerosis complex”, vol. 13. pp. 2102-2106, 2014.
, “Polymorphisms in the delta-like 2 homolog gene and their association with growth and meat-quality traits in Qinchuan cattle”, vol. 13, pp. 2130-2139, 2014.
, , , “Acquisition of pig intramuscular preadipocytes through dedifferentiation of mature adipocytes and establishment of optimal induction conditions”, vol. 12, pp. 5926-5936, 2013.
, “Association between IL-1RN gene polymorphisms and susceptibility to ankylosing spondylitis: a large Human Genome Epidemiology review and meta-analysis”, vol. 12, pp. 1720-1730, 2013.
, “Effect of inhibition of MEK pathway on 5-aza-deoxycytidine-suppressed pancreatic cancer cell proliferation”, vol. 12, pp. 5560-5573, 2013.
, “Expression of a GDP-L-galactose phosphorylase-like gene in a Chinese wild Vitis species induces responses to Erysiphe necator and defense signaling molecules”, vol. 12, pp. 3830-3844, 2013.
, “The genetic variant rs401681C/T is associated with the risk of non-small cell lung cancer in a Chinese mainland population”, vol. 12. pp. 67-73, 2013.
, Bae EY, Lee SY, Kang BK, Lee EJ, et al. (2012). Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology 17: 699-706.
http://dx.doi.org/10.1111/j.1440-1843.2012.02165.x
PMid:22404340
Ginsberg MS (2005). Epidemiology of lung cancer. Semin. Roentgenol. 40: 83-89.
http://dx.doi.org/10.1053/j.ro.2005.01.007
PMid:15898406
Girard N, Lou E, Azzoli CG, Reddy R, et al. (2010). Analysis of genetic variants in never-smokers with lung cancer facilitated by an Internet-based blood collection protocol: a preliminary report. Clin. Cancer Res. 16: 755-763.
http://dx.doi.org/10.1158/1078-0432.CCR-09-2437
PMid:20068085 PMCid:2808124
Haiman CA, Chen GK, Vachon CM, Canzian F, et al. (2011). A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat. Genet. 43: 1210-1214.
http://dx.doi.org/10.1038/ng.985
PMid:22037553 PMCid:3279120
Hardin M, Zielinski J, Wan ES, Hersh CP, et al. (2012). CHRNA3/5, IREB2, and ADCY2 are associated with Severe COPD in Poland. Am. J. Respir. Cell Mol. Biol. [Epub ahead of print].
http://dx.doi.org/10.1165/rcmb.2012-0011OC
PMid:22461431
Haugen A, Ryberg D, Mollerup S, Zienolddiny S, et al. (2000). Gene-environment interactions in human lung cancer. Toxicol. Lett. 112-113: 233-237.
http://dx.doi.org/10.1016/S0378-4274(99)00275-1
Hung RJ, McKay JD, Gaborieau V, Boffetta P, et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633-637.
http://dx.doi.org/10.1038/nature06885
PMid:18385738
Kiyohara C, Yoshimasu K, Takayama K and Nakanishi Y (2007). Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol. 3: 617-627.
http://dx.doi.org/10.2217/14796694.3.6.617
PMid:18041914
Kollarova H, Janout V and Cizek L (2002). Epidemiology of lung cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 146: 103-114.
http://dx.doi.org/10.5507/bp.2002.022
PMid:12572908
Lam WK (2005). Lung cancer in Asian women-the environment and genes. Respirology 10: 408-417.
http://dx.doi.org/10.1111/j.1440-1843.2005.00723.x
PMid:16135162
Law MH, Montgomery GW, Brown KM, Martin NG, et al. (2012). Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J. Invest. Dermatol. 132: 485-487.
http://dx.doi.org/10.1038/jid.2011.322
PMid:21993562 PMCid:3258346
Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 31: 1977-1981.
http://dx.doi.org/10.1093/carcin/bgq179
PMid:20802237 PMCid:2966556
McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406.
http://dx.doi.org/10.1038/ng.254
PMid:18978790 PMCid:2748187
Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227.
http://dx.doi.org/10.1038/ng.296
PMid:19151717
Sanchez-Cespedes M (2009). Lung cancer biology: a genetic and genomic perspective. Clin. Transl. Oncol. 11: 263-269.
http://dx.doi.org/10.1007/s12094-009-0353-7
PMid:19451058
Sugimura H, Tao H, Suzuki M, Mori H, et al. (2011). Genetic susceptibility to lung cancer. Front Biosci. 3: 1463-1477.
http://dx.doi.org/10.2741/237
Thill PG, Goswami P, Berchem G and Domon B (2011). Lung cancer statistics in Luxembourg from 1981 to 2008. Bull. Soc. Sci. Med. Grand Duche Luxemb. 43-55.
PMid:22272445
Vossen RH, Aten E, Roos A and den Dunnen JT (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum. Mutat. 30: 860-866.
http://dx.doi.org/10.1002/humu.21019
PMid:19418555
Weinrich SL, Pruzan R, Ma L, Ouellette M, et al. (1997). Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17: 498-502.
http://dx.doi.org/10.1038/ng1297-498
PMid:9398860
Wu C, Hu Z, Yu D, Huang L, et al. (2009). Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69: 5065-5072.
http://dx.doi.org/10.1158/0008-5472.CAN-09-0081
PMid:19491260
“Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation”, vol. 12, pp. 5267-5277, 2013.
, “Meta-analysis demonstrates association of the TGF-β1 gene -C509T polymorphism with susceptibility to IgA nephropathy in European but not in Asian populations”, vol. 12, pp. 434-442, 2013.
, Awad MR, El-Gamel A, Hasleton P, Turner DM, et al. (1998). Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66: 1014-1020.
http://dx.doi.org/10.1097/00007890-199810270-00009
PMid:9808485
Baan CC, Balk AH, Holweg CT, van Riemsdijk IC, et al. (2000). Renal failure after clinical heart transplantation is associated with the TGF-beta 1 codon 10 gene polymorphism. J. Heart Lung Transplant. 19: 866-872.
http://dx.doi.org/10.1016/S1053-2498(00)00155-8
Bantis C, Heering PJ, Aker S, Klein-Vehne N, et al. (2004). Association of interleukin-10 gene G-1082A polymorphism with the progression of primary glomerulonephritis. Kidney Int. 66: 288-294.
http://dx.doi.org/10.1111/j.1523-1755.2004.00730.x
PMid:15200436
Bhowmik D, Sinha S, Gupt A, Tiwari SC, et al. (2011). Clinical approach to rapidly progressive renal failure. J. Assoc. Physicians India 59: 38-41.
PMid:21751663
Brezzi B, Del Prete D, Lupo A, Magistroni R, et al. (2009). Primary IgA nephropathy is more severe in TGF-beta1 high secretor patients. J. Nephrol. 22: 747-759.
PMid:19967654
Carturan S, Roccatello D, Menegatti E, Di Simone D, et al. (2004). Association between transforming growth factor beta1 gene polymorphisms and IgA nephropathy. J. Nephrol. 17: 786-793.
PMid:15593052
Chen BP, Wei YS, Xie JS and Huang HL (2005). Transforming growth factor beta1 gene polymorphisms in ZHUANG and HAN nationality in Guangxi Province. Chin. J. Anat. 28: 379-380.
Cotton SA, Gbadegesin RA, Williams S, Brenchley PE, et al. (2002). Role of TGF-beta1 in renal parenchymal scarring following childhood urinary tract infection. Kidney Int. 61: 61-67.
http://dx.doi.org/10.1046/j.1523-1755.2002.00110.x
PMid:11786085
Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
http://dx.doi.org/10.1136/bmj.315.7109.629
PMid:9310563 PMCid:2127453
Grainger DJ, Heathcote K, Chiano M, Snieder H, et al. (1999). Genetic control of the circulating concentration of transforming growth factor type beta1. Hum. Mol. Genet. 8: 93-97.
http://dx.doi.org/10.1093/hmg/8.1.93
PMid:9887336
Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558.
http://dx.doi.org/10.1002/sim.1186
PMid:12111919
Hohenstein B, Daniel C, Wittmann S and Hugo C (2008). PDE-5 inhibition impedes TSP-1 expression, TGF-beta activation and matrix accumulation in experimental glomerulonephritis. Nephrol. Dial. Transplant. 23: 3427-3436.
http://dx.doi.org/10.1093/ndt/gfn319
PMid:18596129
Holla LI, Fassmann A, Benes P, Halabala T, et al. (2002). 5 polymorphisms in the transforming growth factor-β 1 gene (TGF-beta1) in adult periodontitis. J. Clin. Periodontol. 29: 336-341.
http://dx.doi.org/10.1034/j.1600-051X.2002.290409.x
PMid:11966931
Iwano M (2010). EMT and TGF-beta in renal fibrosis. Front Biosci. 2: 229-238.
http://dx.doi.org/10.2741/s60
Julian BA, Wyatt RJ, Matousovic K, Moldoveanu Z, et al. (2007). IgA nephropathy: a clinical overview. Contrib. Nephrol. 157: 19-26.
PMid:17495433
Kovacs TJ, Harris S, Vas TK, Seres I, et al. (2006). Paraoxonase gene polymorphism and serum activity in progressive IgA nephropathy. J. Nephrol. 19: 732-738.
PMid:17173245
Lacha J, Hubacek JA, Potmesil P, Viklicky O, et al. (2001). TGF-beta I gene polymorphism in heart transplant recipients - effect on renal function. Ann. Transplant. 6: 39-43.
PMid:11803605
Lee HS (2011). Pathogenic role of TGF-beta in the progression of podocyte diseases. Histol. Histopathol. 26: 107-116.
PMid:21117032
Li SL, Lin X, Wang J, Yang F, et al. (2011). Relationship of transforming growth factorß1 gene -509C/T polymorphism with IgA nephropathy in Western Guangxi. China J. Modern Med. 21: 1607-1610.
Lim CS, Kim YS, Chae DW, Ahn C, et al. (2005). Association of C-509T and T869C polymorphisms of transforming growth factor-beta1 gene with susceptibility to and progression of IgA nephropathy. Clin. Nephrol. 63: 61-67.
PMid:15730046
Narita I, Saito N, Goto S, Jin S, et al. (2002). Role of uteroglobin G38A polymorphism in the progression of IgA nephropathy in Japanese patients. Kidney Int. 61: 1853-1858.
http://dx.doi.org/10.1046/j.1523-1755.2002.00336.x
PMid:11967037
Narita I, Goto S, Saito N, Song J, et al. (2003). Genetic polymorphism of NPHS1 modifies the clinical manifestations of Ig A nephropathy. Lab. Invest. 83: 1193-1200.
http://dx.doi.org/10.1097/01.LAB.0000080600.49276.31
PMid:12920248
Petitti DB (1994). Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis. Oxford University Press, New York.
Qin W, Zhang YJ, Tan CY, Liu XR, et al. (2008). Association of TGF-β1 gene polymorphism with IgA nephropathy. West China Med. J. 23: 61-63.
Sato F, Narita I, Goto S, Kondo D, et al. (2004). Transforming growth factor-beta1 gene polymorphism modifies the histological and clinical manifestations in Japanese patients with IgA nephropathy. Tissue Antigens 64: 35-42.
http://dx.doi.org/10.1111/j.1399-0039.2004.00256.x
PMid:15191521
Song JH, Lee SW, Suh JH, Kim ES, et al. (2003). The effects of dual blockade of the renin-angiotensin system on urinary protein and transforming growth factor-beta excretion in 2 groups of patients with IgA and diabetic nephropathy. Clin. Nephrol. 60: 318-326.
PMid:14640237
Syrjanen J, Hurme M, Lehtimaki T, Mustonen J, et al. (2002). Polymorphism of the cytokine genes and IgA nephropathy. Kidney Int. 61: 1079-1085.
http://dx.doi.org/10.1046/j.1523-1755.2002.00193.x
PMid:11849463
Vuong MT, Lundberg S, Gunnarsson I, Wramner L, et al. (2009). Genetic variation in the transforming growth factor-β1 gene is associated with susceptibility to IgA nephropathy. Nephrol. Dial. Transplant. 24: 3061-3067.
http://dx.doi.org/10.1093/ndt/gfp079
PMid:19258388 PMCid:2747497
Wiwanitkit V (2006). Angiotensin-converting enzyme gene polymorphism is correlated to the progression of disease in patients with IgA nephropathy: a meta-analysis. Ren. Fail. 28: 697-699.
http://dx.doi.org/10.1080/08860220600925636
PMid:17162429
Xue C, Li YJ, Li CX, Du Y, et al. (2005). Relationship of TGF-β1 -509C/T polymorphism with IgA nephropathy in HAN Nationality of Chinese Population. J. Sun Yat-Sen Univ. 26: 260-263.
Yamada Y, Miyauchi A, Goto J, Takagi Y, et al. (1998). Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J. Bone Miner. Res. 13: 1569-1576.
http://dx.doi.org/10.1359/jbmr.1998.13.10.1569
PMid:9783545
Yamada Y, Miyauchi A, Takagi Y, Tanaka M, et al. (2001). Association of the C-509→T polymorphism, alone of in combination with the T869→C polymorphism, of the transforming growth factor-beta1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women. J. Mol. Med. 79: 149-156.
http://dx.doi.org/10.1007/s001090100190
PMid:11357939
Yamamoto R, Nagasawa Y, Shoji T, Katakami N, et al. (2012). A candidate gene approach to genetic contributors to the development of IgA nephropathy. Nephrol. Dial. Transplant. 27: 1020-1030.
http://dx.doi.org/10.1093/ndt/gfr369
PMid:21737517
Yokota M, Ichihara S, Lin TL, Nakashima N, et al. (2000). Association of a T29→C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101: 2783- 2787.
http://dx.doi.org/10.1161/01.CIR.101.24.2783
PMid:10859282
“SNPs at 3'-UTR of the bovine CDIPT gene associated with Qinchuan cattle meat quality traits”, vol. 12, pp. 775-782, 2013.
, Antonsson BE (1994). Purification and characterization of phosphatidylinositol synthase from human placenta. Biochem. J. 297 (Pt 3): 517-522.
PMid:8110188 PMCid:1137864
Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432.
PMid:8071165
Chakraborty R, Zhong Y, de AM, Clemens PR, et al. (1994). Linkage disequilibria among (CA)n polymorphisms in the human dystrophin gene and their implications in carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophies. Genomics 21: 567-570.
http://dx.doi.org/10.1006/geno.1994.1315
PMid:7959733
Chen H and Leibenguth F (1995). Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 33: 297-306.
http://dx.doi.org/10.1007/BF02399929
PMid:8748455
Deguchi A, Segawa K, Hosaka K, Weinstein IB, et al. (2002). Overexpression of phosphatidylinositol synthase enhances growth and G1 progression in NIH3T3 cells. Jpn. J. Cancer Res. 93: 157-166.
http://dx.doi.org/10.1111/j.1349-7006.2002.tb01254.x
PMid:11856479
Fu YY, Xiong YZ, Pan G, Cheng L, et al. (2009). Association of the polymorphism of porcine CDIPT gene with carcass and meat quality traits. Chin. J. Anim. Vet. Sci. 40: 787-791.
Hamlin KE, Green RD, Perkins TL, Cundiff LV, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: I. Description of age and weight effects. J. Anim. Sci. 73: 1713-1724.
PMid:7673065
Lykidis A, Jackson PD, Rock CO and Jackowski S (1997). The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. J. Biol. Chem. 272: 33402-33409.
http://dx.doi.org/10.1074/jbc.272.52.33402
PMid:9407135
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
PMid:291943 PMCid:413122
Neilson JR and Sandberg R (2010). Heterogeneity in mammalian RNA 3' end formation. Exp. Cell Res. 316: 1357-1364.
http://dx.doi.org/10.1016/j.yexcr.2010.02.040
PMid:20211174 PMCid:2866830
White DA (1973). The Phospholipid Composition of Mammalian Tissues. In: Form and Function of Phospholipids (Ansell GB, Hawthorne JN and Dawson RMC, eds.). Elsevier, Amsterdam, 441-482.
Zhao J, Hyman L and Moore C (1999). Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63: 405-445.
PMid:10357856 PMCid:98971
Zhou JP, Zhu XP, Zhang W, Qin F, et al. (2011). A novel single-nucleotide polymorphism in the 5' upstream region of the prolactin receptor gene is associated with fiber traits in Liaoning cashmere goats. Genet. Mol. Res. 10: 2511-2516.
http://dx.doi.org/10.4238/2011.October.13.8
PMid:22009863
Zimin AV, Delcher AL, Florea L, Kelley DR, et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10: R42.
http://dx.doi.org/10.1186/gb-2009-10-4-r42
PMid:19393038 PMCid:2688933
“Cloning, expression analysis and sequence prediction of the CCAAT/enhancer-binding protein alpha gene of Qinchuan cattle”, vol. 11, pp. 1651-1661, 2012.
,
Bennett CN, Hodge CL, MacDougald OA and Schwartz J (2003). Role of Wnt10b and C/EBPα in spontaneous adipogenesis of 243 cells. Biochem. Biophs. Res. 302: 12-16.
http://dx.doi.org/10.1016/S0006-291X(03)00092-5
Birkenmeier EH, Gwynn B, Howard S and Jerry J (1989). Is CCAAT/enhancer-binding protein a central regulator of energy metabolism. Genes Dev. 3: 1146-1156.
http://dx.doi.org/10.1101/gad.3.8.1146
PMid:2792758
Chui PC, Guan HP, Lehrke M and Lazar MA (2005). PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J. Clin. Invest. 115: 2244-2256.
http://dx.doi.org/10.1172/JCI24130
PMid:16007265 PMCid:1172230
Chumakov AM, Grillier I, Chumakova E, Chih D, et al. (1997). Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol. Cell Biol. 17: 1375-1386.
PMid:9032264 PMCid:231862
Croniger CM, Millward C, Yang J, Kawai Y, et al. (2001). Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism. J. Biol. Chem. 276: 629- 638.
http://dx.doi.org/10.1074/jbc.M007576200
PMid:11024029
Gomez-Santos C, Barrachina M, Gimenez-Xavier P, Dalfo E, et al. (2005). Induction of C/EBP beta and GADD153 expression by dopamine in human neuroblastoma cells. Relationship with alpha-synuclein increase and cell damage. Brain Res. Bull. 65: 87-95.
PMid:15680548
Hanson RW (1998). Biological role of the isoforms of C/EBP minireview series. J. Biol. Chem. 273: 28543.
http://dx.doi.org/10.1074/jbc.273.44.28543
PMid:9786840
Hu BL and Zan LS (2001). Association Analysis Between Bovine Carcass Traits and Meat Quality Traits. Master's thesis. Northwest A&F University, Yangling.
Imai T, Takakuwa R, Marchand S, Dentz E, et al. (2004). Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl. Acad. Sci. U. S. A. 101: 4543-4547.
http://dx.doi.org/10.1073/pnas.0400356101
PMid:15070754 PMCid:384783
Julie L, Kirstin E and Nick AS (2009). Real-Time PCR: Current Technology and Applications. Caister Academic Press, Norfolk.
PMCid:2767118
Lee CH, Olson P and Evans RM (2003). Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201-2207.
http://dx.doi.org/10.1210/en.2003-0288
PMid:12746275
Lefterova MI, Zhang Y, Steger DJ, Schupp M, et al. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22: 2941-2952.
http://dx.doi.org/10.1101/gad.1709008
PMid:18981473 PMCid:2577797
Lekstrom HJ and Xanthopoulos KG (1998). Biological role of CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273: 28545-28548.
http://dx.doi.org/10.1074/jbc.273.44.28545
Lin FT, MacDougald OA, Diehl MA and Lane MD (1993). A 30-kDa alternative translation product of the CCAAT/ enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc. Nat. Acad. Sci. USA 90: 9606-9610.
http://dx.doi.org/10.1073/pnas.90.20.9606
PMid:8415748 PMCid:47618
Lopez RG, Garcia-Silva S, Moore SJ, Bereshchenko O, et al. (2009). C/EBPα and beta couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol. 11: 1181-1190.
http://dx.doi.org/10.1038/ncb1960
PMid:19749746
MacDougald OA and Lane MD (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373.
http://dx.doi.org/10.1146/annurev.bi.64.070195.002021
PMid:7574486
Poli V (1998). The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 273: 29279-29282.
http://dx.doi.org/10.1074/jbc.273.45.29279
PMid:9792624
Ramji DP and Foka P (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365: 561-575.
PMid:12006103 PMCid:1222736
Rosen ED, Hsu CH, Wang X, Sakai S, et al. (2002). C/EBPα induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16: 22-26.
http://dx.doi.org/10.1101/gad.948702
PMid:11782441 PMCid:155311
Shimano H (2001). Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 40: 439-452.
http://dx.doi.org/10.1016/S0163-7827(01)00010-8
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15: 1034-1050.
http://dx.doi.org/10.1101/gr.3715005
PMid:16024819 PMCid:1182216
Storch J and Thumser AE (2000). The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 1486: 28-44.
http://dx.doi.org/10.1016/S1388-1981(00)00046-9
Taniguchi Y and Sasaki Y (1996). Rapid communication: nucleotide sequence of bovine C/EBP alpha gene. J. Anim. Sci. 74: 2554.
PMid:8904724
Williams SC, Cantwell CA and Johnson PF (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev. 5: 1553-1567.
http://dx.doi.org/10.1101/gad.5.9.1553
PMid:1884998
Yeh WC, Cao Z, Classon M and McKnight SL (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9: 168-181.
http://dx.doi.org/10.1101/gad.9.2.168
PMid:7531665
Zuo Y, Qiang L and Farmer SR (2006). Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/ EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J. Biol. Chem. 281: 7960-7967.
http://dx.doi.org/10.1074/jbc.M510682200
PMid:16431920
“Mapping of HtNB, a gene conferring non-lesion resistance before heading to Exserohilum turcicum (Pass.), in a maize inbred line derived from the Indonesian variety Bramadi”, vol. 11, pp. 2523-2533, 2012.
,
Belkhadir Y, Subramaniam R and Dangl JL (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant Biol. 7: 391-399.
http://dx.doi.org/10.1016/j.pbi.2004.05.009
PMid:15231261
Carson M (1995). A new gene in maize conferring the "chlorotic halo" reaction to infection by Exserohilum turcicum. Plant Dis. 79: 717-720.
http://dx.doi.org/10.1094/PD-79-0717
Chen WL, Liu ZZ and Li WH (2005). The progress of plant glycine-rich proteins in plants and the gene expression regulation. J. NE. Agr. Univ. 36: 512-519.
Dingerdissen A, Geiger H, Lee M and Schechert A (1996). Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Mol. Breed. 2: 143-156.
http://dx.doi.org/10.1007/BF00441429
Freymark PJ, Lee M, Martinson CA and Woodman W (1994). Molecular-marker-facilitated investigation of host-plant response to Exserohilum turcicum in maize (Zea mays L.): components of resistance. Theor. Appl. Genet. 88: 305-313.
http://dx.doi.org/10.1007/BF00223637
Gao WD, Dai FC and Zhu XY (1997). Evaluation of corn germplasm resources for resistance to four disease. Acta Phytotaxonom. Sin. 24: 191-192.
Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, et al. (1993). Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134: 917-930.
PMid:8102344 PMCid:1205526
Gevers HO (1975). A new major gene for resistance to Helminthosporium turcicum leaf blight of maize. Plant Dis. Rep. 59: 296-299.
Hooker AL (1963). Inheritance of chlorotic-lesion resistance to Helminthosporium turcicum in seedling corn. Phytopathology 53: 660-662.
Hooker AL (1977). A second major gene locus in corn for chlorotic-lesion resistance to Helminthosporium turicum. Crop Sci. 17: 132-135.
http://dx.doi.org/10.2135/cropsci1977.0011183X001700010035x
Hooker AL (1981). Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporated into corn. Maize Genet. Coop. Newsl. 55: 87-88.
Huang LJ, Xiang DQ, Yang JP and Dai JR (2002). The construction of RFLP linkage map and QTL mapping for northern corn leaf blight in maize. Acta Genet. Sin. 29: 1100-1104.
PMid:12693102
Kolkman JM, Zhang ZW, Casstevens T and Wisser R (2009). Association Mapping Analysis of Resistance to Northern Leaf Blight in Maize. In: 51th Maize Genetic Conference, Illinois, 129.
Lander ES, Green P, Abrahamson J, Barlow A, et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.
http://dx.doi.org/10.1016/0888-7543(87)90010-3
Leonard KJ, Levy Y and Smith DR (1989). Proposed nomenclature for pathogenic races of Exserohilum turcicum on corn. Plant Dis. 73: 776-777.
Levy Y and Cohen Y (1983). Biotic and environmental factors affecting infection of sweet corn with Exserohilum turcicum. Phytopathology 73: 722-725.
http://dx.doi.org/10.1094/Phyto-73-722
Li JS and Liu JL (1984). Study on the interaction of monogenic and polygenic resistance to Helminthosporium tucicum in maize (Zea mays L.). Acta Agronom. Sin. 10: 155-162.
Lu H, Romero-Severson J and Bernardo R (2002). Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105: 622-628.
http://dx.doi.org/10.1007/s00122-002-0970-9
PMid:12582513
Molina A, Mena M, Carbonero P and Garcia-Olmedo F (1997). Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33: 803-810.
http://dx.doi.org/10.1023/A:1005712803130
PMid:9106504
Ogliari JB, Guimarães MA and Camargo LEA (2007). Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. Genet. Mol. Biol. 30: 630-634.
http://dx.doi.org/10.1590/S1415-47572007000400021
Pan SF, Jiang JC, Ma RZ and Bai JK (1980). The prevention and controlling of maize northern corn leaf blight. Sci. Agr. Sin. 3: 78-83.
Raymundo AD and Hooker AL (1981). Measuring the relationship between northern corn leaf blight and yield losses. Plant Dis. 65: 325-327.
http://dx.doi.org/10.1094/PD-65-325
Raymundo AD and Hooker AL (1982). Single and combined effects of monogenic and polygenic resistance on certain components of northern corn leaf blight development. Phytopathology 72: 99-103.
http://dx.doi.org/10.1094/Phyto-72-99
Raymundo AD, Hooker AL and Perkins JM (1981). Effect of gene HtN on the development of northern corn leaf blight epidemics. Plant Dis. 65: 327-329.
http://dx.doi.org/10.1094/PD-65-327
Schechert AW, Welz HG and Geiger HH (1999). QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci. 39: 514-523.
http://dx.doi.org/10.2135/cropsci1999.0011183X003900020036x
Simcox KD and Bennetzen JL (1993a). Mapping the HtN resistance gene to the long arm of chromosome 8. Coop. Newsl. 67: 118.
Simcox KD and Bennetzen JL (1993b). The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83: 1326-1330.
http://dx.doi.org/10.1094/Phyto-83-1326
Smith DR and Kinsey JG (1993). Latent period - A possible selection tool for Exserohilum turcicum resistance in corn (Zea mays L.). Maydica 38: 205-208.
van der Hoorn RA and Kamoun S (2008). From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20: 2009-2017.
http://dx.doi.org/10.1105/tpc.108.060194
PMid:18723576 PMCid:2553620
Wang ZH, Jia YL and Xia YW (2004). Research advances on molecular mechanism of disease resistance in plants. Chin. Bull. Bot. 21: 521-530.
Wang YS, Pi LY, Chen X, Chakrabarty PK, et al. (2006). Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18: 3635-3646.
http://dx.doi.org/10.1105/tpc.106.046730
PMid:17172358 PMCid:1785399
Welz HG, Xia XC, Bassetti P and Melchinger AE (1999). QTLs for resistance to Setosphaeria turcica in an early maturing Dent x Flint maize population. Theor. Appl. Genet. 99: 649-655.
http://dx.doi.org/10.1007/s001220051280
PMid:22665201
Wu JC, Chen G, Zhang TY and Liu CZ (1996). Application of multiple resistance inbred line E28 of corn in breeding. Maize Sci. 4: 1-4.
Xiao W, Zhao J, Fan S, Li L, et al. (2007). Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theor. Appl. Genet. 115: 501-508.
http://dx.doi.org/10.1007/s00122-007-0583-4
PMid:17581735
Xu SZ, Liu SD, Xiong XZ and Liu JL (1987). Indonesian landrace "Bramadi" selected lines, the resistant heredity mechanism of northern corn leaf blight. Sci. Agr. Sin. 20: 48-55.
Yin XY, Wang QH, Yang JL and Jin DM (2002). Fine mapping of gene Ht2 conferring resistance to northern corn leaf blight in maize. Chin. Sci. Bull. 23: 1811-1814.
Zaitlin D, DeMars SJ and Gupta M (1992). Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genet. Coop. Newsl. 66: 69-70.
Zhang Q, Gao YJ, Yang SH and Ragab RA (1994). A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor. Appl. Genet. 89: 185-192.
http://dx.doi.org/10.1007/BF00225139
Zhao BR (2000). Evaluation of corn germplasm resources for resistance to northern corn leaf blight. Maize Sci. 8: 91-92.
Zheng ZP, Liu XH, Huang YB and Li Z (2007). QTL mapping for northern corn leaf blight in maize. J. SW Agr. Univ. 20: 634-637.
“Microsatellite markers for assessing genetic diversity of the medicinal plant Paris polyphylla var. chinensis (Trilliaceae)”, vol. 11, pp. 1975-1980, 2012.
,
Belkhir KP, Borsa P, Chikhi L, Raufaste N, et al. (2001). GENETIX, Logiciel Sous WindowsTM Pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000. Université de Montpellier II, Montpellier.
Bloor PA, Barker FS, Watts PC, Noyes HA, et al. (2001). Microsatellite Libraries by Enrichment. Available at [http://www.genomics.liv.ac.uk/animal/MICROSAT.PDF]. Accessed January 2002.
Cabral PD, Soares TC, Lima AB, de Miranda FD, et al. (2011). Genetic diversity in local and commercial dry bean (Phaseolus vulgaris) accessions based on microsatellite markers. Genet. Mol. Res. 10: 140-149.
http://dx.doi.org/10.4238/vol10-1gmr993
PMid:21308655
Chakraborty R, Kimmel M, Stivers DN, Davison LJ, et al. (1997). Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl. Acad. Sci. U. S. A. 94: 1041-1046.
http://dx.doi.org/10.1073/pnas.94.3.1041
PMid:9023379 PMCid:19636
Demir K, Bakir M, Sarikamis G and Acunalp S (2010). Genetic diversity of eggplant (Solanum melongena) germplasm from Turkey assessed by SSR and RAPD markers. Genet. Mol. Res. 9: 1568-1576.
http://dx.doi.org/10.4238/vol9-3gmr878
PMid:20714999
Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Ellegren H (2004). Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435-445.
http://dx.doi.org/10.1038/nrg1348
PMid:15153996
Goncalves LS, Rodrigues R, do Amaral Junior AT, Karasawa M, et al. (2009). Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genet. Mol. Res. 8: 364-374.
http://dx.doi.org/10.4238/vol8-1gmr549
PMid:19440972
Ji S, Zhou TS and Chang CJ (2001). Determination of anti tumor cytotoxic active substance gracillin in Rhizoma Paridis and yunnan white. Chin. Tradit. Patent Med. 23: 212-215.
Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18.
http://dx.doi.org/10.4238/vol9-1gmr692
PMid:20082266
Li H (1986). A study on the taxonomy of the genus Paris L. Bull. Bot. Res. 6: 109-144.
Li H, Yang X, Liang H, Wei Z, et al. (1998). The Genus Paris (Trilliaceae). Science Press, Beijing.
Liang SY and Soukup VG (2000). Paris L. In: Flora of China (Wu ZY and Raven PH, eds.). Vol. 24. Science Press, Beijing, Missouri Botanical Garden Press, St. Louis.
Nei M, Maruyama T and Chakraborty R (1975). The bottleneck effect and genetic variability in populations. Evolution 29: 1-10.
http://dx.doi.org/10.2307/2407137
Oliveira EC, Amaral Junior AT, Goncalves LS, Pena GF, et al. (2010). Optimizing the efficiency of the touchdown technique for detecting inter-simple sequence repeat markers in corn (Zea mays). Genet. Mol. Res. 9: 835-842.
http://dx.doi.org/10.4238/vol9-2gmr767
PMid:20449816
R aymond M and Rousset F (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, et al. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am. J. Bot. 87: 1647-1655.
http://dx.doi.org/10.2307/2656741
PMid:11080115
Schlötterer C (2004). The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. 5: 63-69.
http://dx.doi.org/10.1038/nrg1249
PMid:14666112
Sharma PC, Grover A and Kahl G (2007). Mining microsatellites in eukaryotic genomes. Trends Biotechnol. 25: 490-498.
http://dx.doi.org/10.1016/j.tibtech.2007.07.013
PMid:17945369
van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Vieira EA, Carvalho FIF, Bertan I, Kopp MM, et al. (2007). Association between genetic distances in wheat (Triticum aestivum L.) as estimated by AFLP and morphological markers. Genet. Mol. Biol. 30: 392-399.
http://dx.doi.org/10.1590/S1415-47572007000300016
Wu SS, Gao WY, Duan HQ and Jia W (2004). Advances in studies on chemical constituents and pharmacological activities of Rhizoma paridis. Chin. Tradit. Herb. Drugs. 3: 344-347.
“Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust”, vol. 11, pp. 3198-3206, 2012.
,
Afzal SN, Haque MI, Ahmedani MS, Rauf A, et al. (2008). Impact of stripe rust on kernel weight of wheat varieties sown in rainfed areas of Pakistan. Pak. J. Bot. 40: 923-929.
Bariana HS and McIntosh RA (1993). Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476-482.
http://dx.doi.org/10.1139/g93-065
PMid:18470001
Cao Z, Deng Z, Wang M, Wang X, et al. (2008). Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. Plant Sci. 174: 544-549.
http://dx.doi.org/10.1016/j.plantsci.2008.02.007
Chen Q, Conner RL, Ahmad F, Laroche A, et al. (1998). Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticum and T. aestivum × Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor. Appl. Genet. 97: 1-8.
http://dx.doi.org/10.1007/s001220050860
Chen XM (2005). Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant. Pathol. 27: 314-337.
http://dx.doi.org/10.1080/07060660509507230
Dreisigacker S (2004). Genetic Diversity in Elite Lines and Land Races of CIMMYT Spring Bread Wheat and Hybrid Performance of Crosses Among Elite Germplasm. Ph.D. thesis, Faculty of Agriculture, University of Hohenheim, Hohenheim.
Friebe B, Jiang J, Raupp WJ, McIntosh RA, et al. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59-87.
http://dx.doi.org/10.1007/BF00035277
Fu J, Chen S and Zhang A (1993). Studies of the formation and cytogenetics of octoploid Tritileymus. Acta Genet. Sin. 20: 317-323.
Fu J, Chen S, Zhang A, Hou W, et al. (1996). Cytogenetic studies on the cross progenies between octoploid Tritileymus and Triticum aestivum. Acta Genet. Sin. 23: 24-31.
Fu J, Xu X, Yang Q, Chen S, et al. (1997). Cytogenetic studies on the cross between octoploid Tritileymus and nulllisomic wheat. Acta Genet. Sin. 24: 350-357.
He R, Chang Z, Yang Z, Yuan Z, et al. (2009). Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet. 118: 1173-1180.
http://dx.doi.org/10.1007/s00122-009-0971-z
PMid:19214392
Hu LJ, Li GR, Zeng ZX, Chang ZJ, et al. (2011). Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica 177: 169-177.
http://dx.doi.org/10.1007/s10681-010-0216-x
Jiang J, Friebe B and Gill BS (1994). Recent advances in alien gene transfer in wheat. Euphytica 73: 199-212.
http://dx.doi.org/10.1007/BF00036700
Kang Z, Zhao J, Han D, Zhang H et al. (2010). Status of wheat rust research and control in China. Available at [http:// www.globalrust.org/db/attachments/bgriiwc/24/2/07-kang-ca-A4-embargo.pdf].
Kishii M, Wang RR and Tsujimoto H (2003). Characteristics and behaviour of the chromosomes of Leymus mollis and L. racemosus (Triticeae, Poaceae) during mitosis and meiosis. Chromosome Res 11: 741-748.
http://dx.doi.org/10.1023/B:CHRO.0000005774.00726.71
PMid:14712860
Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, et al. (2007a). Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114: 1379-1389.
http://dx.doi.org/10.1007/s00122-007-0524-2
PMid:17356867
Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, et al. (2007b). A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci. 47: 1995-2003.
http://dx.doi.org/10.2135/cropsci2007.01.0038
Li Q, Chen XM, Wang MN and Jing JX (2011). Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theor. Appl. Genet. 122: 189-197.
http://dx.doi.org/10.1007/s00122-010-1435-1
PMid:20838759
Luo PG, Luo HY, Chang ZJ, Zhang HY, et al. (2009). Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 118: 1059-1064.
http://dx.doi.org/10.1007/s00122-009-0962-0
PMid:19194691
Nasuda S, Friebe B, Busch W, Kynast RG, et al. (1998). Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the compair and related wheat-Ae. comosa translocations in wheat improvement. Theor. Appl. Genet. 96: 780-785.
http://dx.doi.org/10.1007/s001220050802
Singh RP, Nelson JC and Sorrells ME (2000). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 40: 1148-1155.
http://dx.doi.org/10.2135/cropsci2000.4041148x
Sui XX, Wang MN and Chen XM (2009). Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99: 1209-1215.
http://dx.doi.org/10.1094/PHYTO-99-10-1209
PMid:19740035
Wan AM, Chen XM and He ZH (2007). Wheat stripe rust in China. Aust. J. Agr. Res. 58: 605-619.
http://dx.doi.org/10.1071/AR06142
Wang XP, Fu J, Zhang XQ, Jing JK, et al. (2000). Molecular cytogenetic study on genome constitutions of octoploid Tritileymus. Acta Bot. Sin. 42: 582-586.
Yu JK, Dake TM, Singh S, Benscher D, et al. (2004). Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47: 805-818.
http://dx.doi.org/10.1139/g04-057
PMid:15499395
Zhang P, McIntosh RA, Hoxha S and Dong C (2009). Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor. Appl. Genet. 120: 25-29.
http://dx.doi.org/10.1007/s00122-009-1156-5
PMid:19763533
Zhou YC, Zhang XQ, Wang XP, Wu LR, et al. (2001). Chromosomal location and molecular marker of resistance gene to Puccinia striiformis west. in Leymus mollis Trin. Hara. Yi Chuan Xue Bao 28: 864-869.
PMid:11582747
“Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with C-reactive protein in Chinese Han patients with spontaneous basal ganglia hemorrhage”, vol. 11, pp. 1841-1850, 2012.
,
Al-Daghri N, Chetty R, McTernan PG, Al-Rubean K, et al. (2005). Serum resistin is associated with C-reactive protein & LDL cholesterol in type 2 diabetes and coronary artery disease in a Saudi population. Cardiovasc. Diabetol. 4: 10.
http://dx.doi.org/10.1186/1475-2840-4-10
PMid:15998471 PMCid:1183229
Bokarewa M, Nagaev I, Dahlberg L, Smith U, et al. (2005). Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 174: 5789-5795.
PMid:15843582
Brown R, Thompson HJ, Imran SA, Ur E, et al. (2008). Traumatic brain injury induces adipokine gene expression in rat brain. Neurosci. Lett. 432: 73-78.
http://dx.doi.org/10.1016/j.neulet.2007.12.008
PMid:18178314 PMCid:2367125
Cho YM, Youn BS, Chung SS, Kim KW, et al. (2004). Common genetic polymorphisms in the promoter of resistin gene are major determinants of plasma resistin concentrations in humans. Diabetologia 47: 559-565.
PMid:14740159
Dong XQ, Hu YY, Yu WH and Zhang ZY (2010a). High concentrations of resistin in the peripheral blood of patients with acute basal ganglia hemorrhage are associated with poor outcome. J. Crit. Care 25: 243-247.
http://dx.doi.org/10.1016/j.jcrc.2009.09.008
PMid:19903588
Dong XQ, Yang SB, Zhu FL, Lv QW, et al. (2010b). Resistin is associated with mortality in patients with traumatic brain injury. Crit. Care 14: R190.
http://dx.doi.org/10.1186/cc9307
PMid:21029428 PMCid:3219297
Efstathiou SP, Tsiakou AG, Tsioulos DI, Panagiotou TN, et al. (2007). Prognostic significance of plasma resistin levels in patients with atherothrombotic ischemic stroke. Clin. Chim. Acta 378: 78-85.
http://dx.doi.org/10.1016/j.cca.2006.10.023
PMid:17173885
Fasshauer M, Klein J, Neumann S, Eszlinger M, et al. (2001). Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 288: 1027-1031.
http://dx.doi.org/10.1006/bbrc.2001.5874
PMid:11689013
Hivert MF, Manning AK, McAteer JB, Dupuis J, et al. (2009). Association of variants in RETN with plasma resistin levels and diabetes-related traits in the Framingham Offspring Study. Diabetes 58: 750-756.
http://dx.doi.org/10.2337/db08-1339
PMid:19074981 PMCid:2646076
Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, et al. (2003). Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 309: 286-290.
http://dx.doi.org/10.1016/j.bbrc.2003.07.003
PMid:12951047
Kawanami D, Maemura K, Takeda N, Harada T, et al. (2004). Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem. Biophys. Res. Commun. 314: 415-419.
http://dx.doi.org/10.1016/j.bbrc.2003.12.104
PMid:14733921
Kothari RU, Brott T, Broderick JP, Barsan WG, et al. (1996). The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27: 1304-1305.
http://dx.doi.org/10.1161/01.STR.27.8.1304
PMid:8711791
Lin XJ, Zhang YD, Guan QS, Di Q, et al. (2007). Plasma resistin levels and single-nucleotide polymorphisms in resistin gene 5' flanking region in patients with stroke. Chin. Med. Sci. J. 22: 27-32.
PMid:17441314
Lu SC, Shieh WY, Chen CY, Hsu SC, et al. (2002). Lipopolysaccharide increases resistin gene expression in vivo and in vitro. FEBS Lett. 530: 158-162.
http://dx.doi.org/10.1016/S0014-5793(02)03450-6
Osawa H, Yamada K, Onuma H, Murakami A, et al. (2004). The G/G genotype of a resistin single-nucleotide polymorphism at -420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am. J. Hum. Genet. 75: 678-686.
http://dx.doi.org/10.1086/424761
PMid:15338456 PMCid:1182055
Osawa H, Tabara Y, Kawamoto R, Ohashi J, et al. (2007). Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care 30: 1501-1506.
http://dx.doi.org/10.2337/dc06-1936
PMid:17384338
Pang SS and Le YY (2006). Role of resistin in inflammation and inflammation-related diseases. Cell. Mol. Immunol. 3: 29-34.
PMid:16549046
Piestrzeniewicz K, Luczak K and Goch JH (2009). Factors associated with C-reactive protein at the early stage of acute myocardial infarction in men. Cardiol. J. 16: 36-42.
PMid:19130414
Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, et al. (2005). Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 111: 932-939.
http://dx.doi.org/10.1161/01.CIR.0000155620.10387.43
PMid:15710760
Shetty GK, Economides PA, Horton ES, Mantzoros CS, et al. (2004). Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 27: 2450-2457.
http://dx.doi.org/10.2337/diacare.27.10.2450
PMid:15451915
Silswal N, Singh AK, Aruna B, Mukhopadhyay S, et al. (2005). Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem. Biophys. Res. Commun. 334: 1092-1101.
http://dx.doi.org/10.1016/j.bbrc.2005.06.202
PMid:16039994
Steppan CM, Bailey ST, Bhat S, Brown EJ, et al. (2001a). The hormone resistin links obesity to diabetes. Nature 409: 307-312.
http://dx.doi.org/10.1038/35053000
PMid:11201732
Steppan CM, Brown EJ, Wright CM, Bhat S, et al. (2001b). A family of tissue-specific resistin-like molecules. Proc. Natl. Acad. Sci. U. S. A. 98: 502-506.
http://dx.doi.org/10.1073/pnas.98.2.502
PMid:11209052 PMCid:14616
Tsukahara T, Nakashima E, Watarai A, Hamada Y, et al. (2009). Polymorphism in resistin promoter region at -420 determines the serum resistin levels and may be a risk marker of stroke in Japanese type 2 diabetic patients. Diabetes Res. Clin. Pract. 84: 179-186.
http://dx.doi.org/10.1016/j.diabres.2008.10.021
PMid:19269054
Ukkola O, Kunnari A and Kesaniemi YA (2008). Genetic variants at the resistin locus are associated with the plasma resistin concentration and cardiovascular risk factors. Regul. Pept. 149: 56-59.
http://dx.doi.org/10.1016/j.regpep.2007.08.025
PMid:18440081
Wiesner G, Brown RE, Robertson GS, Imran SA, et al. (2006). Increased expression of the adipokine genes resistin and fasting-induced adipose factor in hypoxic/ischaemic mouse brain. Neuroreport 17: 1195-1198.
http://dx.doi.org/10.1097/01.wnr.0000224776.12647.ba
PMid:16837853
Wilkinson M, Brown R, Imran SA and Ur E (2007). Adipokine gene expression in brain and pituitary gland. Neuroendocrinology 86: 191-209.
http://dx.doi.org/10.1159/000108635
PMid:17878708
Yoshino T, Kusunoki N, Tanaka N, Kaneko K, et al. (2011). Elevated serum levels of resistin, leptin, and adiponectin are associated with C-reactive protein and also other clinical conditions in rheumatoid arthritis. Intern. Med. 50: 269-275.
http://dx.doi.org/10.2169/internalmedicine.50.4306
PMid:21325757
“Transcriptomic profiles of Japanese medaka (Oryzias latipes) in response to alkalinity stress”, vol. 11, pp. 2200-2246, 2012.
,
Brindley DN and Pilquil C (2009). Lipid phosphate phosphatases and signaling. J. Lipid. Res. 50: S225-S230.
http://dx.doi.org/10.1194/jlr.R800055-JLR200
PMid:19066402 PMCid:2674702
Claiborne JB, Edwards SL and Morrison-Shetlar AI (2002). Acid-base regulation in fishes: cellular and molecular mechanisms. J. Exp. Zool. 293: 302-319.
http://dx.doi.org/10.1002/jez.10125
PMid:12115903
Dennis G Jr, Sherman BT, Hosack DA, Yang J, et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4: 3.
http://dx.doi.org/10.1186/gb-2003-4-5-p3
Evans TG (2010). Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. J. Fish Biol. 76: 1903-1925.
http://dx.doi.org/10.1111/j.1095-8649.2010.02590.x
PMid:20557646
Fiol DF and Kültz D (2007). Osmotic stress sensing and signaling in fishes. FEBS J. 274: 5790-5798.
http://dx.doi.org/10.1111/j.1742-4658.2007.06099.x
PMid:17944942
Gibson G (2008). The environmental contribution to gene expression profiles. Nat. Rev. Genet. 9: 575-581.
http://dx.doi.org/10.1038/nrg2383
PMid:18574472
Gilmour KM and Perry SF (2009). Carbonic anhydrase and acid-base regulation in fish. J. Exp. Biol. 212: 1647-1661.
http://dx.doi.org/10.1242/jeb.029181
PMid:19448075
Goss GG, Wood CM, Laurent P and Perry SF (1994). Morphological responses of the rainbow trout (Oncorhynchus mykiss) gill to hyperoxia, base (NaHCO3) and acid (HCl) infusions. Fish Physiol. Biochem. 12: 465-477.
http://dx.doi.org/10.1007/BF00004449
Green TJ and Barnes AC (2010). Reduced salinity, but not estuarine acidification, is a cause of immune-suppression in the Sydney rock oyster Saccostrea glomerata. Mar. Ecol. Prog. Ser. 402: 161-170.
http://dx.doi.org/10.3354/meps08430
Hirayama M, Nakaniwa M, Mitani H and Watabe S (2005). Gene expression profiles for medaka Olyzias latipes associated with cold and warm temperatures in cDNA microarray. Comp. Biochem. Phys. 141: S354-S355.
Hwang PP and Lee TH (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148: 479-497.
http://dx.doi.org/10.1016/j.cbpa.2007.06.416
PMid:17689996
Inoue K and Takei Y (2002). Diverse adaptability in oryzias species to high environmental salinity. Zoolog. Sci. 19: 727- 734.
http://dx.doi.org/10.2108/zsj.19.727
PMid:12149572
Kanehisa M and Goto S (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30.
http://dx.doi.org/10.1093/nar/28.1.27
PMid:10592173 PMCid:102409
Kang CK, Tsai SC, Lee TH and Hwang PP (2008). Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 151: 566-575.
http://dx.doi.org/10.1016/j.cbpa.2008.07.020
PMid:18692588
Kasahara M, Naruse K, Sasaki S, Nakatani Y, et al. (2007). The medaka draft genome and insights into vertebrate genome evolution. Nature 447: 714-719.
http://dx.doi.org/10.1038/nature05846
PMid:17554307
Kültz D (2001). Evolution of osmosensory MAP kinase signaling pathways. Am. Zool. 41: 743-757.
http://dx.doi.org/10.1668/0003-1569(2001)041[0743:EOOMKS]2.0.CO;2
Kültz D (2005). Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67: 225-257.
http://dx.doi.org/10.1146/annurev.physiol.67.040403.103635
PMid:15709958
Kurosawa Y and Hashimoto K (1997). How did the primordial T cell receptor and MHC molecules function initially? Immunol. Cell Biol. 75: 193-196.
http://dx.doi.org/10.1038/icb.1997.28
PMid:9107575
Lang F, Bohmer C, Palmada M, Seebohm G, et al. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol. Rev. 86: 1151-1178.
http://dx.doi.org/10.1152/physrev.00050.2005
PMid:17015487
Lockwood BL, Sanders JG and Somero GN (2010). Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J. Exp. Biol. 213: 3548-3558.
http://dx.doi.org/10.1242/jeb.046094
PMid:20889835
Loffing J, Flores SY and Staub O (2006). Sgk kinases and their role in epithelial transport. Annu. Rev. Physiol. 68: 461- 490.
http://dx.doi.org/10.1146/annurev.physiol.68.040104.131654
PMid:16460280
Parra JEG and Baldisserotto B (2007). Effect of Water pH and Hardness on Survival and Growth of Freshwater Teleosts. In: Fish Osmoregulation (Baldisserotto B, Mancera JM and Kapoor BG, eds.). Science Publishers, Enfield, 139.
Perry SF and Gilmour KM (2006). Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir. Physiol. Neurobiol. 154: 199-215.
http://dx.doi.org/10.1016/j.resp.2006.04.010
PMid:16777496
Podrabsky JE and Somero GN (2004). Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J. Exp. Biol. 207: 2237-2254.
http://dx.doi.org/10.1242/jeb.01016
PMid:15159429
Prophete C, Carlson EA, Li Y, Duffy J, et al. (2006). Effects of elevated temperature and nickel pollution on the immune status of Japanese medaka. Fish Shellfish Immunol. 21: 325-334.
http://dx.doi.org/10.1016/j.fsi.2005.12.009
PMid:16529948
Randall DJ and Tsui TK (2006). Tribute to R. G. Boutilier: acid-base transfer across fish gills. J. Exp. Biol. 209: 1179- 1184.
http://dx.doi.org/10.1242/jeb.02100
PMid:16547290
Rodrigues PN, Hermsen TT, van Maanen A, Taverne-Thiele AJ, et al. (1998). Expression of MhcCyca class I and class II molecules in the early life history of the common carp (Cyprinus carpio L.). Dev. Comp. Immunol. 22: 493-506.
http://dx.doi.org/10.1016/S0145-305X(97)00059-1
Rozen S and Skaletsky HJ (2000). Primer 3 on the WWW for General Users and for Biologist Programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, Totowa, 365-386.
PMid:10547847
Schmittgen TD and Livak KJ (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101- 1108.
http://dx.doi.org/10.1038/nprot.2008.73
PMid:18546601
Scott GR, Richards JG, Forbush B, Isenring P, et al. (2004). Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. Cell Physiol. 287: C300-C309.
http://dx.doi.org/10.1152/ajpcell.00054.2004
PMid:15044150
Takeda H and Shimada A (2010). The art of medaka genetics and genomics: what makes them so unique? Annu. Rev. Genet. 44: 217-241.
http://dx.doi.org/10.1146/annurev-genet-051710-151001
PMid:20731603
Todgham AE and Hofmann GE (2009). Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol. 212: 2579-2594.
http://dx.doi.org/10.1242/jeb.032540
PMid:19648403
Tseng YC and Hwang PP (2008). Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148: 419-429.
Tufts BL, Esbaugh A and Lund SG (2003). Comparative physiology and molecular evolution of carbonic anhydrase in the erythrocytes of early vertebrates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136: 259-269.
http://dx.doi.org/10.1016/S1095-6433(03)00159-4
Vijayan M, Morgan J, Sakamoto T, Grau E, et al. (1996). Food-deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. J. Exp. Biol. 199: 2467-2475.
PMid:9320394
Wang YS, Gonzalez RJ, Patrick ML, Grosell M, et al. (2003). Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: a high altitude alkaline saline lake. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134: 409-421.
http://dx.doi.org/10.1016/S1095-6433(02)00317-3
Wilkie MP and Wood CM (1996). The adaptations of fish to extremely alkaline environments. Comp. Biochem. Phys. B 113: 665-673.
http://dx.doi.org/10.1016/0305-0491(95)02092-6
Yao ZL, Lai QF, Zhou K, Rizalita RE, et al. (2010). Developmental biology of medaka fish (Oryzias latipes) exposed to alkalinity stress. J. Appl. Ichthyol. 26: 397-402.
http://dx.doi.org/10.1111/j.1439-0426.2009.01360.x
Yum S, Woo S, Kagami Y, Park HS, et al. (2010). Changes in gene expression profile of medaka with acute toxicity of Arochlor 1260, a polychlorinated biphenyl mixture. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151: 51-56.
Zhang Z, Ju Z, Wells MC and Walter RB (2009). Genomic approaches in the identification of hypoxia biomarkers in model fish species. J. Exp. Mar. Biol. Ecol. 381: S180-S187.
http://dx.doi.org/10.1016/j.jembe.2009.07.021
PMid:20161383 PMCid:2782826
“Association between a single nucleotide polymorphism in the bovine chemerin gene and carcass traits in Qinchuan cattle”, vol. 10, pp. 2833-2840, 2011.
, Bozaoglu K, Bolton K, McMillan J, Zimmet P, et al. (2007). Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687-4694.
http://dx.doi.org/10.1210/en.2007-0175
PMid:17640997
Gantz I, Konda Y, Yang YK, Miller DE, et al. (1996). Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet. Cell Genet. 74: 286-290.
http://dx.doi.org/10.1159/000134436
Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, et al. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282: 28175-28188.
http://dx.doi.org/10.1074/jbc.M700793200
PMid:17635925
Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Martensson UE, Fenyo EM, Olde B and Owman C (2006). Characterization of the human chemerin receptor - ChemR23/ CMKLR1 - as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology 355: 6-17.
http://dx.doi.org/10.1016/j.virol.2006.07.010
PMid:16904155
Meder W, Wendland M, Busmann A, Kutzleb C, et al. (2003). Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555: 495-499.
http://dx.doi.org/10.1016/S0014-5793(03)01312-7
Methner A, Hermey G, Schinke B and Hermans-Borgmeyer I (1997). A novel G protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. Biochem. Biophys. Res. Commun. 233: 336-342.
http://dx.doi.org/10.1006/bbrc.1997.6455
PMid:9144535
Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391.
PMid:2623762
Mussig K, Staiger H, Machicao F, Thamer C, et al. (2009). RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism 58: 519-524.
http://dx.doi.org/10.1016/j.metabol.2008.11.011
PMid:19303973
Nagpal S, Patel S, Jacobe H, DiSepio D, et al. (1997). Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109: 91-95.
http://dx.doi.org/10.1111/1523-1747.ep12276660
PMid:9204961
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
Owman C, Nilsson C and Lolait SJ (1996). Cloning of cDNA encoding a putative chemoattractant receptor. Genomics 37: 187-194.
http://dx.doi.org/10.1006/geno.1996.0541
PMid:8921391
Roh SG, Song SH, Choi KC, Katoh K, et al. (2007). Chemerin - a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362: 1013-1018.
http://dx.doi.org/10.1016/j.bbrc.2007.08.104
PMid:17767914
Samson M, Edinger AL, Stordeur P, Rucker J, et al. (1998). ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28: 1689-1700.
http://dx.doi.org/10.1002/(SICI)1521-4141(199805)28:05<1689::AID-IMMU1689>3.0.CO;2-I
Sell H and Eckel J (2009). Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68: 378-384.
http://dx.doi.org/10.1017/S0029665109990218
PMid:19698204
Song SH, Fukui K, Nakajima K, Kozakai T, et al. (2010). Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39: 97-105.
http://dx.doi.org/10.1016/j.domaniend.2010.02.007
PMid:20399065
Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, et al. (2008). Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582: 573-578.
http://dx.doi.org/10.1016/j.febslet.2008.01.023
PMid:18242188
Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, et al. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198: 977-985.
http://dx.doi.org/10.1084/jem.20030382
PMid:14530373 PMCid:2194212
Wittamer V, Bondue B, Guillabert A, Vassart G, et al. (2005). Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175: 487-493.
PMid:15972683
Zabel BA, Allen SJ, Kulig P, Allen JA, et al. (2005). Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280: 34661-34666.
http://dx.doi.org/10.1074/jbc.M504868200
PMid:16096270
Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287.
http://dx.doi.org/10.1016/j.ab.2007.03.023
PMid:17449006
“Isolation and characterization of microsatellite markers for the Korean rockfish, Sebastes schlegeli”, vol. 10. pp. 2065-2068, 2011.
, An HS and Park JY (2009). Isolation and characterization of microsatellite markers for the heavily exploited rockfish Sebastes schlegeli, and cross-species amplification in four related Sebastes spp. Conserv. Genet. 10: 1969-1972.
http://dx.doi.org/10.1007/s10592-009-9870-8
Hu FG, Wang ZG, Zhang Y and Nie AH (2010). Research of parent Korean rockfish cultivating technique. Sci. Fish Farm. 4: 38-39.
Kitada S, Shishidou H, Sugaya T, Kitakado T, et al. (2009). Genetic effects of long-term stock enhancement programs. Aquaculture 290: 69-79.
http://dx.doi.org/10.1016/j.aquaculture.2009.02.011
Li JL (2009). Fish resource enhancement abroad. Chin. Fish. Econ. 3: 111-123.
Litt M and Luty JA (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44: 397-401.
PMid:2563634 PMCid:1715430
Raymond M and Rousset F (1995). Genepop (version 1.2): population genetics software for exact test and ecumenicism. J. Heredity 86: 248-249.
Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Sambrook J and Russell DW (2001). Molecular Cloning. 3rd edn. Cold Spring Harbor, New York.
Schwartz MK, Luikart G and Waples RS (2007). Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22: 25-33.
http://dx.doi.org/10.1016/j.tree.2006.08.009
Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Yoshida K, Nakagawa M and Wada S (2005). Multiplex PCR system applied for analyzing microsatellite loci of Schlegel’s black rockfish, Sebastes schlegeli. Mol. Ecol. Notes 5: 416-418.
http://dx.doi.org/10.1111/j.1471-8286.2005.00945.x
Zhan A, Bao ZM, Wang XL and Hu JJ (2005). Microsatellite markers derived from bay scallop Argopecten irradians expressed sequence tags. Fish Sci. 71: 1341-1346.
http://dx.doi.org/10.1111/j.1444-2906.2005.01100.x
Zhan A, Hu J, Hu X, Zhou Z, et al. (2009). Fine-scale population genetic structure of Zhikong scallop (Chlamys farreri): do local marine currents drive geographical differentiation? Mar. Biotechnol. 11: 223-235.
http://dx.doi.org/10.1007/s10126-008-9138-1
PMid:18766401
“A novel SNP of the C/EBPα gene associated with superior meat quality in indigenous Chinese cattle”, vol. 10, pp. 2069-2077, 2011.
, Brethour JR (2000). Using serial ultrasound measures to generate models of marbling and backfat thickness changes in feedlot cattle. J. Anim. Sci. 78: 2055-2061.
PMid:10947087
Chumakov AM, Grillier I, Chumakova E, Chih D, et al. (1997). Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol. Cell Biol. 17: 1375-1386.
PMid:9032264 PMCid:231862
Constance CM, Morgan JI and Umek RM (1996). C/EBPalpha regulation of the growth-arrest-associated gene gadd45. Mol. Cell Biol. 16: 3878-3883.
PMid:8668205 PMCid:231384
Freytag SO, Paielli DL and Gilbert JD (1994). Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8: 1654-1663.
http://dx.doi.org/10.1101/gad.8.14.1654
Graves BJ, Johnson PF and McKnight SL (1986). Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene. Cell 44: 565-576.
http://dx.doi.org/10.1016/0092-8674(86)90266-7
Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734.
PMid:7673066
Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080.
http://dx.doi.org/10.2217/14622416.8.8.1075
PMid:17716239
Kurland CG (1991). Codon bias and gene expression. FEBS Lett. 285: 165-169.
http://dx.doi.org/10.1016/0014-5793(91)80797-7
Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Lekstrom-Himes J and Xanthopoulos KG (1998). Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273: 28545-28548.
http://dx.doi.org/10.1074/jbc.273.44.28545
PMid:9786841
Lin FT and Lane MD (1992). Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev. 6: 533-544.
http://dx.doi.org/10.1101/gad.6.4.533
Lin FT, MacDougald OA, Diehl AM and Lane MD (1993). A 30-kDa alternative translation product of the CCAAT/ enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc. Natl. Acad. Sci. U. S. A. 90: 9606-9610.
http://dx.doi.org/10.1073/pnas.90.20.9606
Liu YF, Zan LS, Li K, Zhao SP, et al. (2009). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434.
http://dx.doi.org/10.1007/s11033-009-9604-5
PMid:19590978
MacDougald OA and Lane MD (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373.
http://dx.doi.org/10.1146/annurev.bi.64.070195.002021
PMid:7574486
McKnight SL, Lane MD and Gluecksohn-Waelsch S (1989). Is CCAAT/enhancer-binding protein a central regulator of energy metabolism? Genes Dev. 3: 2021-2024.
http://dx.doi.org/10.1101/gad.3.12b.2021
Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391.
PMid:2623762
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
Park EA, Roesler WJ, Liu J, Klemm DJ, et al. (1990). The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol. Cell Biol. 10: 6264-6272.
PMid:2147222 PMCid:362901
Simon CW, Cantwell CA and Johnson PF (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Gene Dev. 5: 1553-1567.
http://dx.doi.org/10.1101/gad.5.9.1553
Tang XY, Xu XL, Qian YZ and Jia Y (2006). Improvement of marbling grading system for Chinese beef. Sci. Agric. Sin. 39: 2101-2106.
Wall PB, Rouse GH, Wilson DE, Tait RG Jr, et al. (2004). Use of ultrasound to predict body composition changes in steers at 100 and 65 days before slaughter. J. Anim. Sci. 82: 1621-1629.
PMid:15216987
Wang ND, Finegold MJ, Bradley A, Ou CN, et al. (1995). Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269: 1108-1112.
http://dx.doi.org/10.1126/science.7652557
PMid:7652557
Wu Z, Rosen ED, Brun R, Hauser S, et al. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3: 151-158.
http://dx.doi.org/10.1016/S1097-2765(00)80306-8
Yang D, Zan L, Wang H, Ma Y, et al. (2009). Genetic variation of calsarcin-1 gene and association with carcass traits in 3 Chinese indigenous cattle. Afr. J. Biotechnol. 8: 2713-2717.
Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287.
http://dx.doi.org/10.1016/j.ab.2007.03.023
PMid:17449006
Zhou GH, Sun BZ, Xu XL and Liu L (2010). NY/T676-Beef Quality Grading. Nanjing Agricultural University, Ministry of Agriculture, Nanjing.
“Polymorphic microsatellite loci for the genetic analysis of Lycoris radiata (Amaryllidaceae) and cross-amplification in other congeneric species”, vol. 10, pp. 3141-3145, 2011.
, Bloor PA, Barker FS, Watts PC and Noyes HA (2001). Microsatellite Libraries by Enrichment. Available at [http://www.genomics.liv.ac.uk/animal/MICROSAT.PDF]. Accessed September 22, 2010.
Bores GM, Huger FP, Petko W, Mutlib AE, et al. (1996). Pharmacological evaluation of novel Alzheimer’s disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J. Pharmacol. Exp. Ther. 277: 728-738.
PMid:8627552
Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19: 11-15.
Ellegren H (2004). Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435-445.
http://dx.doi.org/10.1038/nrg1348
PMid:15153996
Harvey AL (1995). The pharmacology of galanthamine and its analogues. Pharmacol. Ther. 68: 113-128.
http://dx.doi.org/10.1016/0163-7258(95)02002-0
Jarvis DE, Kopp OR, Jellen EN, Mallory MA, et al. (2008). Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J. Genet. 87: 39-51.
http://dx.doi.org/10.1007/s12041-008-0006-6
PMid:18560173
Ji ZH and Meerow AW (2000). Amaryllidaceae. In: Flora of China, 24. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
Li YC, Korol AB, Fahima T, Beiles A, et al. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11: 2453-2465.
http://dx.doi.org/10.1046/j.1365-294X.2002.01643.x
PMid:12453231
Menezes IC, Cidade FW, Souza AP and Sampaio IC (2009). Isolation and characterization of microsatellite loci in the black pepper, Piper nigrum L. (piperaceae). Conservat. Genet. Resour. 1: 209-212.
http://dx.doi.org/10.1007/s12686-009-9051-6
Novikova IY and Tulaganov AA (2002). Physicochemical methods for the analysis of galanthamine (review). Pharmaceut. Chem. J. 36: 623-627.
http://dx.doi.org/10.1023/A:1022677601680
Peng YQ, Shao JW, Wu HL, Zhang XP, et al. (2009). Isolation and characterization of fifteen polymorphic microsatellite loci from Primula merrilliana (Primulaceae), an endemic from China. Conserv. Genet. 10: 1441-1443.
http://dx.doi.org/10.1007/s10592-008-9756-1
Raymond M and Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, et al. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am. J. Bot. 87: 1647-1655.
http://dx.doi.org/10.2307/2656741
PMid:11080115
Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Varma A, Padh H and Shrivastava N (2007). Plant genomic DNA isolation: an art or a science. Biotechnol. J. 2: 386-392.
http://dx.doi.org/10.1002/biot.200600195
PMid:17285676
Zhou SB, Yu B, Luo Q, Qin W, et al. (2005). Pollen morphology of Lycoris Herb. and its taxonomic significance. Acta Hortic. Sin. 32: 914-917.
Zhou SB, Luo Q, Li JH and Wang Y (2007a). Comparative anatomy of leaves in 12 species of Lycoris (Amaryllidaceae). Acta Bot. Yunnanica 28: 473-480.
Zhou SB, Yu B-Q, Luo Q, Hu J-R, et al. (2007b). Karyotypes of six populations of Lycoris radiata and discovery of the tetraploid. Acta Phytotaxon. Sin. 45: 513-522.
http://dx.doi.org/10.1360/aps050108