Publications

Found 72 results
Filters: Author is L. Li  [Clear All Filters]
2013
G. X. Jin, Duan, J. Z., Guo, W. L., Li, L., Cui, S. Q., and Wang, H., Association between IL-1RN gene polymorphisms and susceptibility to ankylosing spondylitis: a large Human Genome Epidemiology review and meta-analysis, vol. 12, pp. 1720-1730, 2013.
L. Li, Zhu, J., Guo, S. - X., and Deng, Y., Bicluster and regulatory network analysis of differentially expressed genes in adenocarcinoma and squamous cell carcinoma, vol. 12, pp. 1710-1719, 2013.
X. L. Mu, Li, L., and Li, H., Effect of the ARG1 gene on arsenic resistance of 293T cells, vol. 12, pp. 6825-6837, 2013.
Y. B. Bao, Li, L., Ye, M. X., Dong, Y. H., Jin, W. X., and Lin, Z. H., Expression of glutamine synthetase in Tegillarca granosa (Bivalvia, Arcidae) hemocytes stimulated by Vibrio parahaemolyticus and lipopolysaccharides, vol. 12, pp. 1143-1154, 2013.
Avila C, Suarez MF, Gomez-Maldonado J and Canovas FM (2001). Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development. Plant J. 25: 93-102. http://dx.doi.org/10.1046/j.1365-313x.2001.00938.x PMid:11169185   Avisar N, Shiftan L, Ben-Dror I, Havazelet N, et al. (1999). A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids. J. Biol. Chem. 274: 11399- 11407. http://dx.doi.org/10.1074/jbc.274.16.11399 PMid:10196233   Bao Y, Li L, Wu Q and Zhang G (2009a). Cloning, characterization, and expression analysis of extracellular copper/zinc superoxide dismutase gene from bay scallop Argopecten irradians. Fish Shellfish Immunol. 27: 17-25. http://dx.doi.org/10.1016/j.fsi.2008.11.014 PMid:19084069   Bao Y, Li L, Xu F and Zhang G (2009b). Intracellular copper/zinc superoxide dismutase from bay scallop Argopecten irradians: its gene structure, mRNA expression and recombinant protein. Fish Shellfish Immunol. 27: 210-220. http://dx.doi.org/10.1016/j.fsi.2009.04.005 PMid:19426808   Baruah K, Ranjan J, Sorgeloos P and Bossier P (2010). Efficacy of heterologous and homologous heat shock protein 70s as protective agents to Artemia franciscana challenged with Vibrio campbellii. Fish Shellfish Immunol. 29: 733-739. http://dx.doi.org/10.1016/j.fsi.2010.07.011 PMid:20643210   Brown JR, Masuchi Y, Robb FT and Doolittle WF (1994). Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J. Mol. Evol. 38: 566-576. http://dx.doi.org/10.1007/BF00175876 PMid:7916055   Caizzi R, Bozzetti MP, Caggese C and Ritossa F (1990). Homologous nuclear genes encode cytoplasmic and mitochondrial glutamine synthetase in Drosophila melanogaster. J. Mol. Biol. 212: 17-26. http://dx.doi.org/10.1016/0022-2836(90)90301-2   Eisenberg D, Almassy RJ, Janson CA, Chapman MS, et al. (1987). Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO. Cold Spring Harb. Symp. Quant. Biol. 52: 483-490. http://dx.doi.org/10.1101/SQB.1987.052.01.055 PMid:2900091   Eisenberg D, Gill HS, Pfluegl GM and Rotstein SH (2000). Structure-function relationships of glutamine synthetases. Biochim. Biophys. Acta 1477: 122-145. http://dx.doi.org/10.1016/S0167-4838(99)00270-8   Fahrner J, Labruyere WT, Gaunitz C, Moorman AF, et al. (1993). Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur. J. Biochem. 213: 1067-1073. http://dx.doi.org/10.1111/j.1432-1033.1993.tb17854.x PMid:8099326   Fucci L, Piscopo A, Aniello F, Branno M, et al. (1995). Cloning and characterization of a developmentally regulated sea urchin cDNA encoding glutamine synthetase. Gene 152: 205-208. http://dx.doi.org/10.1016/0378-1119(94)00719-9   Hayward BE, Hussain A, Wilson RH, Lyons A, et al. (1986). The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Nucleic Acids Res. 14: 999-1008. http://dx.doi.org/10.1093/nar/14.2.999 PMid:2868445 PMCid:339478   Kumada Y, Benson DR, Hillemann D, Hosted TJ, et al. (1993). Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc. Natl. Acad. Sci. U. S. A. 90: 3009-3013. http://dx.doi.org/10.1073/pnas.90.7.3009 PMid:8096645 PMCid:46226   Kuo CF and Darnell JE Jr (1989). Mouse glutamine synthetase is encoded by a single gene that can be expressed in a localized fashion. J. Mol. Biol. 208: 45-56. http://dx.doi.org/10.1016/0022-2836(89)90086-7   Murray BW, Busby ER, Mommsen TP and Wright PA (2003). Evolution of glutamine synthetase in vertebrates: multiple glutamine synthetase genes expressed in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 206: 1511-1521. http://dx.doi.org/10.1242/jeb.00283 PMid:12654890   Myohara M, Niva CC and Lee JM (2006). Molecular approach to annelid regeneration: cDNA subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis. Dev. Dyn. 235: 2051-2070. http://dx.doi.org/10.1002/dvdy.20849 PMid:16724321   Shatters RG and Kahn ML (1989). Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. J. Mol. Evol. 29: 422-428. http://dx.doi.org/10.1007/BF02602912 PMid:2575672   Smartt CT, Kiley LM, Hillyer JF, Dasgupta R, et al. (2001). Aedes aegypti glutamine synthetase: expression and gene structure. Gene 274: 35-45. http://dx.doi.org/10.1016/S0378-1119(01)00618-7   Smith OP, Marinov AD, Chan KM and Ferrier MD (2004). Cloning and sequencing of cDNA encoding glutamine synthetase from the sea anemone Aiptasia pallida. Hydrobiologia 530-531: 267-272. http://dx.doi.org/10.1007/s10750-004-2634-z   Tanguy A, Boutet I and Moraga D (2005). Molecular characterization of the glutamine synthetase gene in the Pacific oyster Crassostrea gigas: expression study in response to xenobiotic exposure and developmental stage. Biochim. Biophys. Acta 1681: 116-125. http://dx.doi.org/10.1016/j.bbaexp.2004.10.010 PMid:15627503   Trapido-Rosenthal HG, Linser PJ, Greenberg RM, Gleeson RA, et al. (1993). cDNA clones from the olfactory organ of the spiny lobster encode a protein related to eukaryotic glutamine synthetase. Gene 129: 275-278. http://dx.doi.org/10.1016/0378-1119(93)90279-C   Wang X and Quinn PJ (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 49: 97-107. http://dx.doi.org/10.1016/j.plipres.2009.06.002 PMid:19815028   Wang Y, Kudoh J, Kubota R, Asakawa S, et al. (1996). Chromosomal mapping of a family of human glutamine synthetase genes: functional gene (GLUL) on 1q25, pseudogene (GLULP) on 9p13, and three related genes (GLULL1, GLULL2, GLULL3) on 5q33, 11p15, and 11q24. Genomics 37: 195-199. http://dx.doi.org/10.1006/geno.1996.0542 PMid:8921392
C. - L. Song, Liu, H. - H., Kou, J., Lv, L., Li, L., Wang, W. - X., and Wang, J. - W., Expression profile of insulin-like growth factor system genes in muscle tissues during the postnatal development growth stage in ducks, vol. 12, pp. 4500-4514, 2013.
H. Li, Li, J., Cong, X. H., Duan, Y. B., Li, L., Wei, P. C., Lu, X. Z., and Yang, J. B., A high-throughput, high-quality plant genomic DNA extraction protocol, vol. 12, pp. 4526-4539, 2013.
L. Li, Jiang, J., Wang, X., and Jiang, X., Nested clade phylogeographical analysis of the finless porpoise (Neophocaena phocaenoides) inhabiting Chinese and Japanese coasts, vol. 12, pp. 2528-2536, 2013.
C. R. Li, Liang, D. D., Xu, R. F., Li, H., Zhang, Y. P., Qin, R. Y., Li, L., Wei, P. C., and Yang, J. B., Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L., vol. 12, pp. 5424-5432, 2013.
H. Li, Ni, D. H., Duan, Y. B., Chen, Y., Li, J., Song, F. S., Li, L., Wei, P. C., and Yang, J. B., Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR, vol. 12, pp. 6433-6441, 2013.
H. L. Xi, Liu, J. F., Li, L., and Wan, J., Relationship between dilated cardiomyopathy and the E23K and I337V polymorphisms in the Kir6.2 subunit of the KATP channel, vol. 12, pp. 4383-4392, 2013.
L. Li, Zhao, Y. W., Zeng, J. S., Fan, F., Wang, X., Zhou, Y., and Zhu, Z., Rituximab regulates the expression of the Raf kinase inhibitor protein via NF-κB in renal tissue of rats with diabetic nephropathy, vol. 12, pp. 2973-2981, 2013.
2012
B. M. Liu, Liu, T. M., You, B. S., You, H. Y., Yang, J., Li, L., and He, Y. C., Lack of an association between the XRCC1 Arg399Gln polymorphism and gastric cancer based on a meta-analysis, vol. 11, pp. 3852-3860, 2012.
Bray F, Sankila R, Ferlay J and Parkin DM (2002). Estimates of cancer incidence and mortality in Europe in 1995. Eur. J. Cancer 38: 99-166. http://dx.doi.org/10.1016/S0959-8049(01)00350-1   Capella G, Pera G, Sala N, Agudo A, et al. (2008). DNA repair polymorphisms and the risk of stomach adenocarcinoma and severe chronic gastritis in the EPIC-EURGAST study. Int. J. Epidemiol. 37: 1316-1325. http://dx.doi.org/10.1093/ije/dyn145 PMid:18641418   Chen B, Zhou Y, Yang P and Wu XT (2012). Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol. Biol. Rep. 39: 1305-1313. http://dx.doi.org/10.1007/s11033-011-0863-6 PMid:21604176   DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control. Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2   Duarte MC, Colombo J, Rossit AR, Caetano A, et al. (2005). Polymorphisms of DNA repair genes XRCC1 and XRCC3, interaction with environmental exposure and risk of chronic gastritis and gastric cancer. World J. Gastroenterol. 11: 6593-6600. PMid:16425350   Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 PMid:9310563 PMCid:2127453   Geng J, Zhang YW, Huang GC and Chen LB (2008). XRCC1 genetic polymorphism Arg399Gln and gastric cancer risk: A meta-analysis. World J. Gastroenterol. 14: 6733-6737. http://dx.doi.org/10.3748/wjg.14.6733 PMid:19034980 PMCid:2773319   Geng J, Zhang Q, Zhu C, Wang J, et al. (2009). XRCC1 genetic polymorphism Arg399Gln and prostate cancer risk: a meta-analysis. Urology 74: 648-653. http://dx.doi.org/10.1016/j.urology.2009.02.046 PMid:19428062   Gonzalez CA and Lopez-Carrillo L (2010). Helicobacter pylori, nutrition and smoking interactions: their impact in gastric carcinogenesis. Scand. J. Gastroenterol. 45: 6-14. http://dx.doi.org/10.3109/00365520903401959 PMid:20030576   Hirschhorn JN, Lohmueller K, Byrne E and Hirschhorn K (2002). A comprehensive review of genetic association studies. Genet. Med. 4: 45-61. http://dx.doi.org/10.1097/00125817-200203000-00002 PMid:11882781   Huang WY, Chow WH, Rothman N, Lissowska J, et al. (2005). Selected DNA repair polymorphisms and gastric cancer in Poland. Carcinogenesis 26: 1354-1359. http://dx.doi.org/10.1093/carcin/bgi084 PMid:15802298   Hung RJ, Hall J, Brennan P and Boffetta P (2005). Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am. J. Epidemiol. 162: 925-942. http://dx.doi.org/10.1093/aje/kwi318 PMid:16221808   Kiyohara C, Takayama K and Nakanishi Y (2006). Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung. Cancer 54: 267-283. http://dx.doi.org/10.1016/j.lungcan.2006.08.009 PMid:16982113   Lau J, Ioannidis JP and Schmid CH (1997). Quantitative synthesis in systematic reviews. Ann. Intern. Med. 127: 820-826. PMid:9382404   Lee PN and Hamling J (2009). The relation between smokeless tobacco and cancer in Northern Europe and North America. A commentary on differences between the conclusions reached by two recent reviews. BMC Cancer 9: 256. http://dx.doi.org/10.1186/1471-2407-9-256 PMid:19638246 PMCid:3087330   Lee SG, Kim B, Choi J, Kim C, et al. (2002). Genetic polymorphisms of XRCC1 and risk of gastric cancer. Cancer Lett. 187: 53-60. http://dx.doi.org/10.1016/S0304-3835(02)00381-6   Lei YC, Hwang SJ, Chang CC, Kuo HW, et al. (2002). Effects on sister chromatid exchange frequency of polymorphisms in DNA repair gene XRCC1 in smokers. Mutat. Res. 519: 93-101. http://dx.doi.org/10.1016/S1383-5718(02)00127-4   Li WQ, Zhang L, Ma JL, Zhang Y, et al. (2009). Association between genetic polymorphisms of DNA base excision repair genes and evolution of precancerous gastric lesions in a Chinese population. Carcinogenesis 30: 500-505. http://dx.doi.org/10.1093/carcin/bgp018 PMid:19147860   Lindahl T (2000). Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat. Res. 462: 129-135. http://dx.doi.org/10.1016/S1383-5742(00)00024-7   Lunn RM, Langlois RG, Hsieh LL, Thompson CL, et al. (1999). XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 59: 2557-2561. PMid:10363972   Malfertheiner P, Bornschein J and Selgrad M (2010). Role of Helicobacter pylori infection in gastric cancer pathogenesis: a chance for prevention. J. Dig. Dis. 11: 2-11. http://dx.doi.org/10.1111/j.1751-2980.2009.00408.x PMid:20132425   Mantel N and Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22: 719-748. PMid:13655060   Marintchev A, Mullen MA, Maciejewski MW, Pan B, et al. (1999). Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat. Struct. Biol. 6: 884-893. http://dx.doi.org/10.1038/12347 PMid:10467102   Miao X, Zhang X, Zhang L, Guo Y, et al. (2006). Adenosine diphosphate ribosyl transferase and x-ray repair cross-complementing 1 polymorphisms in gastric cardia cancer. Gastroenterology 131: 420-427. http://dx.doi.org/10.1053/j.gastro.2006.05.050 PMid:16890595   Munafo MR, Clark TG and Flint J (2004). Assessing publication bias in genetic association studies: evidence from a recent meta-analysis. Psychiatry Res. 129: 39-44. http://dx.doi.org/10.1016/j.psychres.2004.06.011 PMid:15572183   Palli D, Polidoro S, D'Errico M, Saieva C, et al. (2010). Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer. Mutagenesis 25: 569-575. http://dx.doi.org/10.1093/mutage/geq042 PMid:20817763   Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. http://dx.doi.org/10.3322/canjclin.55.2.74 PMid:15761078   Qu T, Morii E, Oboki K, Lu Y, et al. (2005). Micronuclei in EM9 cells expressing polymorphic forms of human XRCC1. Cancer Lett. 221: 91-95. http://dx.doi.org/10.1016/j.canlet.2004.08.013 PMid:15797631   Ratnasinghe LD, Abnet C, Qiao YL, Modali R, et al. (2004). Polymorphisms of XRCC1 and risk of esophageal and gastric cardia cancer. Cancer Lett. 216: 157-164. http://dx.doi.org/10.1016/j.canlet.2004.03.012 PMid:15533591   Ruzzo A, Canestrari E, Maltese P, Pizzagalli F, et al. (2007). Polymorphisms in genes involved in DNA repair and metabolism of xenobiotics in individual susceptibility to sporadic diffuse gastric cancer. Clin. Chem. Lab. Med. 45: 822-828. http://dx.doi.org/10.1515/CCLM.2007.143 PMid:17617021   Saadat M and Ansari-Lari M (2009). Polymorphism of XRCC1 (at codon 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res. Treat. 115: 137-144. http://dx.doi.org/10.1007/s10549-008-0051-0 PMid:18481169   Shen H, Xu Y, Qian Y, Yu R, et al. (2000). Polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population. Int. J. Cancer 88: 601-606. http://dx.doi.org/10.1002/1097-0215(20001115)88:4<601::AID-IJC13>3.0.CO;2-C   Song CG, Lu HS, Huang CM, Liu X, et al. (2006). Relationship between gene polymorphism of XRCC1 Arg399Gln and the risk of gastric cancer patients in Fujian. Zhonghua Shiyan Waike Zazhi. 23: 1021.   Wang B, Wang D, Huang G, Zhang C, et al. (2010). XRCC1 polymorphisms and risk of colorectal cancer: a meta-analysis. Int. J. Colorectal Dis. 25: 313-321. http://dx.doi.org/10.1007/s00384-009-0866-0 PMid:20033188   Wang C, Sun Y and Han R (2008). XRCC1 genetic polymorphisms and bladder cancer susceptibility: a meta-analysis. Urology 72: 869-872. http://dx.doi.org/10.1016/j.urology.2007.12.059 PMid:18336890   Wang Y, Spitz MR, Zhu Y, Dong Q, et al. (2003). From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair 2: 901-908. http://dx.doi.org/10.1016/S1568-7864(03)00085-5   Yan L, Yanan D, Donglan S, Na W, et al. (2009). Polymorphisms of XRCC1 gene and risk of gastric cardiac adenocarcinoma. Dis. Esophagus 22: 396-401. http://dx.doi.org/10.1111/j.1442-2050.2008.00912.x PMid:19673050   Zhang Z, Miao XP, Tan W, Guo YL, et al. (2006). Correlation of genetic polymorphisms in DNA repair genes ADPRT and XRCC1 to risk of gastric cancer. Ai Zheng 25: 7-10. PMid:16405741
H. - T. Zhang, Xu, Y., Zhang, Z. - H., and Li, L., Meta-analysis of epidemiological studies demonstrates significant association of PTGS2 polymorphism rs689470 and no significant association of rs20417 with prostate cancer, vol. 11, pp. 1642-1650, 2012.
Balistreri CR, Caruso C, Carruba G, Miceli V, et al. (2010). A pilot study on prostate cancer risk and pro-inflammatory genotypes: pathophysiology and therapeutic implications. Curr. Pharm. Des. 16: 718-724. http://dx.doi.org/10.2174/138161210790883877 PMid:20388081 Cao H, Xu Z, Long H, Li XQ, et al. (2010). The -765C allele of the cyclooxygenase-2 gene as a potential risk factor of colorectal cancer: a meta-analysis. Tohoku J. Exp. Med. 222: 15-21. http://dx.doi.org/10.1620/tjem.222.15 PMid:20808059 Cheng I, Liu X, Plummer SJ, Krumroy LM, et al. (2007). COX2 genetic variation, NSAIDs, and advanced prostate cancer risk. Br. J. Cancer 97: 557-561. http://dx.doi.org/10.1038/sj.bjc.6603874 PMid:17609663 PMCid:2360347 Danforth KN, Hayes RB, Rodriguez C, Yu K, et al. (2008). Polymorphic variants in PTGS2 and prostate cancer risk: results from two large nested case-control studies. Carcinogenesis 29: 568-572. http://dx.doi.org/10.1093/carcin/bgm253 PMid:17999989 DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2 Dossus L, Kaaks R, Canzian F, Albanes D, et al. (2010). PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3). Carcinogenesis 31: 455-461. http://dx.doi.org/10.1093/carcin/bgp307 PMid:19965896 PMCid:2832545 Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 PMid:9310563 PMCid:2127453 Gupta S, Srivastava M, Ahmad N, Bostwick DG, et al. (2000). Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42: 73-78. http://dx.doi.org/10.1002/(SICI)1097-0045(20000101)42:1<73::AID-PROS9>3.0.CO;2-G Hiatt RA, Armstrong MA, Klatsky AL and Sidney S (1994). Alcohol consumption, smoking, and other risk factors and prostate cancer in a large health plan cohort in California (United States). Cancer Causes Control 5: 66-72. http://dx.doi.org/10.1007/BF01830728 PMid:7510134 Hori S, Butler E and McLoughlin J (2011). Prostate cancer and diet: food for thought? BJU Int. 107: 1348-1359. http://dx.doi.org/10.1111/j.1464-410X.2010.09897.x PMid:21518228 Ioannidis JP, Boffetta P, Little J, O'Brien TR, et al. (2008). Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol. 37: 120-132. http://dx.doi.org/10.1093/ije/dym159 PMid:17898028 Kirschenbaum A, Klausner AP, Lee R, Unger P, et al. (2000). Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56: 671-676. http://dx.doi.org/10.1016/S0090-4295(00)00674-9 Kosaka T, Miyata A, Ihara H, Hara S, et al. (1994). Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur. J. Biochem. 221: 889-897. http://dx.doi.org/10.1111/j.1432-1033.1994.tb18804.x PMid:8181472 Lee LM, Pan CC, Cheng CJ, Chi CW, et al. (2001). Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res. 21: 1291-1294. PMid:11396201 Liang Y, Liu JL, Wu Y, Zhang ZY, et al. (2011). Cyclooxygenase-2 polymorphisms and susceptibility to esophageal cancer: a meta-analysis. Tohoku J. Exp. Med. 223: 137-144. http://dx.doi.org/10.1620/tjem.223.137 PMid:21304218 Liu JL, Liang Y, Wang ZN, Zhou X, et al. (2010). Cyclooxygenase-2 polymorphisms and susceptibility to gastric carcinoma: a meta-analysis. World J. Gastroenterol. 16: 5510-5517. http://dx.doi.org/10.3748/wjg.v16.i43.5510 PMid:21086572 PMCid:2988247 Madaan S, Abel PD, Chaudhary KS, Hewitt R, et al. (2000). Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 86: 736-741. http://dx.doi.org/10.1046/j.1464-410x.2000.00867.x PMid:11069387 Mahmud S, Franco E and Aprikian A (2004). Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. Br. J. Cancer 90: 93-99. http://dx.doi.org/10.1038/sj.bjc.6601416 PMid:14710213 PMCid:2395299 Mantel N and Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22: 719-748. PMid:13655060 Masferrer JL, Leahy KM, Koki AT, Zweifel BS, et al. (2000). Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60: 1306-1311. PMid:10728691 McArdle PA, Mir K, Almushatat AS, Wallace AM, et al. (2006). Systemic inflammatory response, prostate-specific antigen and survival in patients with metastatic prostate cancer. Urol. Int. 77: 127-129. http://dx.doi.org/10.1159/000093905 PMid:16888416 Murad A, Lewis SJ, Smith GD, Collin SM, et al. (2009). PTGS2-899G>C and prostate cancer risk: a population-based nested case-control study (ProtecT) and a systematic review with meta-analysis. Prostate Cancer Prostatic Dis. 12: 296-300. http://dx.doi.org/10.1038/pcan.2009.18 PMid:19488068 O'Byrne KJ and Dalgleish AG (2001). Chronic immune activation and inflammation as the cause of malignancy. Br. J. Cancer 85: 473-483. http://dx.doi.org/10.1054/bjoc.2001.1943 PMid:11506482 PMCid:2364095 Panguluri RC, Long LO, Chen W, Wang S, et al. (2004). COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 25: 961-966. http://dx.doi.org/10.1093/carcin/bgh100 PMid:14754878 Shacter E and Weitzman SA (2002). Chronic inflammation and cancer. Oncology 16: 217-26, 229. PMid:11866137 Shahedi K, Lindstrom S, Zheng SL, Wiklund F, et al. (2006). Genetic variation in the COX-2 gene and the association with prostate cancer risk. Int. J. Cancer 119: 668-672. http://dx.doi.org/10.1002/ijc.21864 PMid:16506214 Tsujii M and DuBois RN (1995). Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83: 493-501. http://dx.doi.org/10.1016/0092-8674(95)90127-2 Uotila P, Valve E, Martikainen P, Nevalainen M, et al. (2001). Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res. 29: 23-28. http://dx.doi.org/10.1007/s002400000148 PMid:11310211 Wu GY, Hasenberg T, Magdeburg R, Bonninghoff R, et al. (2009). Association between EGF, TGF-beta1, VEGF gene polymorphism and colorectal cancer. World J. Surg. 33: 124-129. http://dx.doi.org/10.1007/s00268-008-9784-5 PMid:19011936 Wu HC, Chang CH, Ke HL, Chang WS, et al. (2011). Association of cyclooxygenase 2 polymorphic genotypes with prostate cancer in taiwan. Anticancer Res. 31: 221-225. PMid:21273602 Yoshimura R, Sano H, Masuda C, Kawamura M, et al. (2000). Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89: 589-596. http://dx.doi.org/10.1002/1097-0142(20000801)89:3<589::AID-CNCR14>3.0.CO;2-C Yu KD, Chen AX, Yang C, Qiu LX, et al. (2010). Current evidence on the relationship between polymorphisms in the COX-2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res. Treat. 122: 251-257. http://dx.doi.org/10.1007/s10549-009-0688-3 PMid:20033767
H. B. Zhang, Wei, S. G., Yu, B., Li, L., and Lai, J. H., Nine polymorphic STR loci in the HLA region in the Shaanxi Han population of China, vol. 11, pp. 2534-2538, 2012.
Cullen M, Malasky M, Harding A and Carrington M (2003). High-density map of short tandem repeats across the human major histocompatibility complex. Immunogenetics 54: 900-910. PMid:12671742   Fiorentino F, Kahraman S, Karadayi H, Biricik A, et al. (2005). Short tandem repeats haplotyping of the HLA region in preimplantation HLA matching. Eur. J. Hum. Genet. 13: 953-958. http://dx.doi.org/10.1038/sj.ejhg.5201435 PMid:15886713   Foissac A, Crouau-Roy B, Faure S, Thomsen M, et al. (1997). Microsatellites in the HLA region: on overview. Tissue Antigens 49: 197-214. http://dx.doi.org/10.1111/j.1399-0039.1997.tb02740.x PMid:9098926   Foissac A, Salhi M and Cambon-Thomsen A (2000). Microsatellites in the HLA region: 1999 update. Tissue Antigens 55: 477-509. http://dx.doi.org/10.1034/j.1399-0039.2000.550601.x PMid:10902606   Gill P, Brinkmann B, d'Aloja E, Andersen J, et al. (1997). Considerations from the European DNA profiling group (EDNAP) concerning STR nomenclature. Forensic Sci. Int. 87: 185-192. http://dx.doi.org/10.1016/S0379-0738(97)00111-4   Gourraud PA, Mano S, Barnetche T, Carrington M, et al. (2004). Integration of microsatellite characteristics in the MHC region: a literature and sequence based analysis. Tissue Antigens 64: 543-555. http://dx.doi.org/10.1111/j.1399-0039.2004.00317.x PMid:15496197   Guo SW and Thompson EA (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372. http://dx.doi.org/10.2307/2532296 PMid:1637966   Kashi Y and King DG (2006). Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22: 253-259. http://dx.doi.org/10.1016/j.tig.2006.03.005 PMid:16567018   Korzebor A, Zamani M, Nouri K and Modarressi MH (2007). Statistical analysis of six STR loci located in MHC region in Iranian population for preimplantation genetic diagnosis. Int. J. Immunogenet. 34: 441-443. http://dx.doi.org/10.1111/j.1744-313X.2007.00719.x PMid:18001301   Malkki M, Gooley T, Horowitz M and Petersdorf EW (2007). MHC class I, II, and III microsatellite marker matching and survival in unrelated donor hematopoietic cell transplantation. Tissue Antigens 69 (Suppl 1): 46-49. http://dx.doi.org/10.1111/j.1399-0039.2006.759_6.x PMid:17445162   Olaisen B, Bar W, Brinkmann B, Budowle B, et al. (1998). DNA recommendations 1997 of the international society for forensic genetics. Vox Sang. 74: 61-63. http://dx.doi.org/10.1046/j.1423-0410.1998.7410061.x PMid:9481867   Rechitsky S, Kuliev A, Tur-Kaspa I, Morris R, et al. (2004). Preimplantation genetic diagnosis with HLA matching. Reprod. Biomed. Online 9: 210-221. http://dx.doi.org/10.1016/S1472-6483(10)62132-3   Schoske R, Vallone PM, Ruitberg CM and Butler JM (2003). Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem. 375: 333-343. PMid:12589496   Sens-Abuazar C, Santos PS, Bicalho MG, Petzl-Erler ML, et al. (2009). MHC microsatellites in a Southern Brazilian population. Int. J. Immunogenet. 36: 269-274. http://dx.doi.org/10.1111/j.1744-313X.2009.00864.x PMid:19659935   Urquhart A, Kimpton CP, Downes TJ and Gill P (1994). Variation in short tandem repeat sequences--a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Legal Med. 107: 13-20. http://dx.doi.org/10.1007/BF01247268 PMid:7999641   Walsh PS, Metzger DA and Higuchi R (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotecchniqu06-513.
2011
J. Feng, Li, L., Zhao, Y. - S., Tang, S. - Q., Yang, H. - B., and Liu, S. - X., Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population, vol. 10, pp. 3331-3337, 2011.
Ashfield-Watt PA, Welch AA, Day NE and Bingham SA (2004). Is 'five-a-day' an effective way of increasing fruit and vegetable intakes? Publ. Health Nutr. 7: 257-261. http://dx.doi.org/10.1079/PHN2003524 PMid:15003132   Cikojević D, Gluncić I and Klancnik M (2010). Cigarette smoking and progression of laryngeal lesions. Coll. Antropol. 34 (Suppl 1): 45-48. PMid:20402295   Ercan B, Ayaz L, Cicek D and Tamer L (2008). Role of CYP2C9 and CYP2C19 polymorphisms in patients with atherosclerosis. Cell Biochem. Funct. 26: 309-313. http://dx.doi.org/10.1002/cbf.1437 PMid:17868191   Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2008). The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension 52: 373-380. http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.114199 PMid:18574070   Fichtlscherer S, Dimmeler S, Breuer S, Busse R, et al. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109: 178-183. http://dx.doi.org/10.1161/01.CIR.0000105763.51286.7F PMid:14662709   Gauthier KM, Falck JR, Reddy LM and Campbell WB (2004). 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol. Res. 49: 515-524. http://dx.doi.org/10.1016/j.phrs.2003.09.014 PMid:15026029   Imig JD (2000). Epoxygenase metabolites. Epithelial and vascular actions. Mol. Biotechnol. 16: 233-251. http://dx.doi.org/10.1385/MB:16:3:233   Jiang JG, Chen CL, Card JW, Yang S, et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65: 4707-4715. http://dx.doi.org/10.1158/0008-5472.CAN-04-4173 PMid:15930289   Jiang JG, Ning YG, Chen C, Ma D, et al. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67: 6665-6674. http://dx.doi.org/10.1158/0008-5472.CAN-06-3643 PMid:17638876   Kurahashi K, Nishihashi T, Trandafir CC, Wang AM, et al. (2003). Diversity of endothelium-derived vasocontracting factors-arachidonic acid metabolites. Acta Pharmacol. Sin. 24: 1065-1069. PMid:14627486   Lundell K and Wikvall K (2008). Species-specific and age-dependent bile acid composition: aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr. Drug Metab. 9: 323-331. http://dx.doi.org/10.2174/138920008784220574 PMid:18473750   Node K, Ruan XL, Dai J, Yang SX, et al. (2001). Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J. Biol. Chem. 276: 15983-15989. http://dx.doi.org/10.1074/jbc.M100439200 PMid:11279071   Sun J, Sui X, Bradbury JA, Zeldin DC, et al. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ. Res. 90: 1020-1027. http://dx.doi.org/10.1161/01.RES.0000017727.35930.33 PMid:12016269   Ye YN, Liu ES, Shin VY, Wu WK, et al. (2004). Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J. Pharmacol. Exp. Ther. 308: 66-72. http://dx.doi.org/10.1124/jpet.103.058321 PMid:14569062
C. L. Hou, Zhang, W., Wei, Y., Mi, J. H., Li, L., Zhou, Z. H., Zeng, W., and Ying, D. J., Zinc finger protein A20 overexpression inhibits monocyte homing and protects endothelial cells from injury induced by high glucose, vol. 10, pp. 1050-1059, 2011.
Fogelman AM, Elahi F, Sykes K, Van Lenten BJ, et al. (1988). Modification of the Recalde method for the isolation of human monocytes. J. Lipid Res. 29: 1243-1247. PMid:3183529 La Fontaine J, Harkless LB, Davis CE, Allen MA, et al. (2006). Current concepts in diabetic microvascular dysfunction. J. Am. Podiatr. Med. Assoc. 96: 245-252. PMid:16707637 Lutz J, Luong Le A, Strobl M, Deng M, et al. (2008). The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J. Mol. Med. 86: 1329-1339. doi:10.1007/s00109-008-0405-4 PMid:18813897 McGinn S, Saad S, Poronnik P and Pollock CA (2003). High glucose-mediated effects on endothelial cell proliferation occur via p38 MAP kinase. Am. J. Physiol. Endocrinol. Metab. 285: E708-E717. PMid:12783777 Mohan S, Mohan N, Valente AJ and Sprague EA (1999). Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. 276: C1100-C1107. PMid:10329958 Patel VI, Daniel S, Longo CR, Shrikhande GV, et al. (2006). A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J. 20: 1418-1430. doi:10.1096/fj.05-4981com PMid:16816117 Romero MJ, Platt DH, Tawfik HE, Labazi M, et al. (2008). Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ. Res. 102: 95-102. doi:10.1161/CIRCRESAHA.107.155028 PMid:17967788    PMCid:2822539 Wang AB, Li HL, Zhang R, She ZG, et al. (2007). A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J. Biomed. Sci. 14: 357-371. doi:10.1007/s11373-007-9150-x PMid:17260188 Yang WS, Seo JW, Han NJ, Choi J, et al. (2008). High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am. J. Physiol. Renal Physiol. 294: F1065-F1075. doi:10.1152/ajprenal.00381.2007 PMid:18353872 Zeng W, Li L, Yuan W, Wei Y, et al. (2009). A20 overexpression inhibits low shear flow-induced CD14-positive monocyte recruitment to endothelial cells. Biorheology 46: 21-30. PMid:19252225 Zhu CH, Ying DJ, Mi JH, Zhang W, et al. (2004). The zinc finger protein A20 protects endothelial cells from burns serum injury. Burns 30: 127-133. doi:10.1016/j.burns.2003.08.010 PMid:15019119

Pages