Publications

Found 9 results
Filters: Author is M. Sun  [Clear All Filters]
2012
M. Sun, Jiang, K., Zhang, F., Zhang, D., Shen, A., Jiang, M., Shen, X., and Ma, L., Effects of various salinities on Na+-K+-ATPase, Hsp70 and Hsp90 expression profiles in juvenile mitten crabs, Eriocheir sinensis, vol. 11, pp. 978-986, 2012.
Beck FX, Neuhofer W and Muller E (2000). Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am. J. Physiol. Ren. Physiol. 279: F203-F215. PMid:10919839 Chiang HL, Terlecky SR, Plant CP and Dice JF (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382-385. http://dx.doi.org/10.1126/science.2799391 PMid:2799391 Deane EE, Kelly SP, Luk JC and Woo NY (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar. Biotechnol. 4: 193-205. Ding S, Wang F, Dong S and Gao Q (2009). Effects of salinity fluctuation amplitudes on growth, osmolarity, Na+-K+- ATPase activity and Hsp70 of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Chin. J. Oceanol. Limnol. 27: 723-728. http://dx.doi.org/10.1007/s00343-009-9185-0 Feder ME and Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. http://dx.doi.org/10.1146/annurev.physiol.61.1.243 PMid:10099689 Harris RR and Santos MCF (1993). Sodium uptake and transport (Na+ + K+) ATPase changes following Na+ depletion and low salinity acclimation in the mangrove crab Ucides cordatus (L.). Comp. Biochem. Physiol. 105: 35-42. http://dx.doi.org/10.1016/0300-9629(93)90170-9 Herborg LM, Rushton SP, Clare AS and Bentley MG (2003). Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia 503: 21-28. http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c Holliday CW (1985). Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab, Uca pugnax. J. Exp. Zool. 233: 199-208. http://dx.doi.org/10.1002/jez.1402330206 Kim CH and Hwang SG (1995). The complete larval development of the mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda, Brachyura, Grapsidae) reared in the laboratory and a key to the known zoeae of the Varuninae. Crustaceana 68: 793-812. Mantel LH and Farmer LL (1983). Osmotic and Ionic Regulation. In: The Biology of Crustacea (Bliss DE and Mantel LH, eds.). Academic Press, London, 54-126. Montú M, Anger K and Bakker C (1996). Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgol. Meeresunters 50: 223-252. http://dx.doi.org/10.1007/BF02367153 Neufeld GJ, Holliday CW and Pritchard JB (1980). Salinity adaption of gill Na, K-ATPase in the blue crab, Callinectes sapidus. J. Exp. Zool. 211: 215-224. http://dx.doi.org/10.1002/jez.1402110210 Pan F, Zarate JM, Tremblay GC and Bradley TM (2000). Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J. Exp. Zool. 287: 199-212. http://dx.doi.org/10.1002/1097-010X(20000801)287:3<199::AID-JEZ2>3.0.CO;2-3 Pan LQ and Luan ZH (2005). The effects of salinity on development and Na+/K+-ATPase activity of Marsupenaeus japonicus postlarvae. Acta Hydrobiol. Sin. 29: 699-703. Péqueux A, Gilles R and Marshall WS (1988). NaCl Transport in Gills and Related Structures. In: Advances in Comparative and Environmental Physiology (Greger R, ed.). Springer, Berlin, 1-73. Siebers D, Leweck K, Markus H and Winkler A (1982). Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar. Biol. 69: 37-43. http://dx.doi.org/10.1007/BF00396958 Skou JC and Esmann M (1992). The Na, K-ATPase. J. Bioenerg. Biomembr. 24: 249-261. PMid:1328174 Spees JL, Chang SA, Snyder MJ and Chang ES (2002). Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol. Bull. 203: 331-337. http://dx.doi.org/10.2307/1543575 PMid:12480723 Torres G, Charmantier-Daures M, Chifflet S and Anger K (2007). Effects of long-term exposure to different salinities on the location and activity of Na+-K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147: 460-465. http://dx.doi.org/10.1016/j.cbpa.2007.01.020 Towle DW (1981). Transport-related ATPases as probes of tissue function in three terrestrial crabs of Palau. J. Exp. Zool. 218: 89-95. http://dx.doi.org/10.1002/jez.1402180111 Towle DW (1997). Molecular approaches to understanding salinity adaptation of estuarine animals. Am. Zool. 37: 575-584. Towle DW, Palmer GE and Harris JL III (1976). Role of gill Na+, K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool. 196: 315-322. http://dx.doi.org/10.1002/jez.1401960306 Welch WJ (1993). How cells respond to stress. Sci. Am. 268: 56-64. http://dx.doi.org/10.1038/scientificamerican0593-56 PMid:8097593 Whiteley NM, Scott JL, Breeze SJ and McCann L (2001). Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204: 1003-1011. PMid:11171423
G. - F. Li, Qian, T. - L., Li, G. - S., Yang, C. - X., Qin, M., Huang, J., Sun, M., and Han, Y. - Q., Sodium valproate inhibits MDA-MB-231 breast cancer cell migration by upregulating NM23H1 expression, vol. 11, pp. 77-86, 2012.
Adams LS, Phung S, Yee N, Seeram NP, et al. (2010). Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 70: 3594-3605. http://dx.doi.org/10.1158/0008-5472.CAN-09-3565 PMid:20388778    PMCid:2862148 Baneshi MR, Warner P, Anderson N, Edwards J, et al. (2010). Tamoxifen resistance in early breast cancer: statistical modelling of tissue markers to improve risk prediction. Br. J. Cancer 102: 1503-1510. http://dx.doi.org/10.1038/sj.bjc.6605627 PMid:20461093    PMCid:2869158 Blaheta RA, Nau H, Michaelis M and Cinatl J Jr (2002). Valproate and valproate-analogues: potent tools to fight against cancer. Curr. Med. Chem. 9: 1417-1433. PMid:12173980 Byun SS, Kim FJ, Khandrika L, Kumar B, et al. (2009). Differential effects of valproic acid on growth, proliferation and metastasis in HTB5 and HTB9 bladder cancer cell lines. Cancer Lett. 281: 196-202. http://dx.doi.org/10.1016/j.canlet.2009.02.045 PMid:19324494 Chen PS, Wang CC, Bortner CD, Peng GS, et al. (2007). Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149: 203- 212. http://dx.doi.org/10.1016/j.neuroscience.2007.06.053 PMid:17850978    PMCid:2741413 D’Angelo A, Garzia L, Andre A, Carotenuto P, et al. (2004). Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5: 137-149. http://dx.doi.org/10.1016/S1535-6108(04)00021-2 D’Souza A, Onem E, Patel P, La Gamma EF, et al. (2009). Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res. 1247: 1-10. http://dx.doi.org/10.1016/j.brainres.2008.09.088 PMid:18976638 Dragunow M, Greenwood JM, Cameron RE, Narayan PJ, et al. (2006). Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience 140: 1149-1156. http://dx.doi.org/10.1016/j.neuroscience.2006.02.065 PMid:16600518 Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, et al. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev. 34: 206-222. http://dx.doi.org/10.1016/j.ctrv.2007.11.003 PMid:18226465 Dutertre M, Gratadou L, Dardenne E, Germann S, et al. (2010). Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res. 70: 3760-3770. http://dx.doi.org/10.1158/0008-5472.CAN-09-3988 PMid:20406972 Fortunati N, Bertino S, Costantino L, Bosco O, et al. (2008). Valproic acid is a selective antiproliferative agent in estrogen-sensitive breast cancer cells. Cancer Lett. 259: 156-164. http://dx.doi.org/10.1016/j.canlet.2007.10.006 PMid:18006146 Jawed S, Kim B, Ottenhof T, Brown GM, et al. (2007). Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur. J. Pharmacol. 560: 17-22. http://dx.doi.org/10.1016/j.ejphar.2007.01.022 PMid:17303109 Jin L, Liu G, Zhang CH, Lu CH, et al. (2009). Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: a functional proteomics study. Life Sci. 84: 458-467. http://dx.doi.org/10.1016/j.lfs.2009.01.010 PMid:19302816 Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, et al. (2007). Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp. Hematol. 35: 1527-1537. http://dx.doi.org/10.1016/j.exphem.2007.06.014 PMid:17697742 Leone A, McBride OW, Weston A, Wang MG, et al. (1991). Somatic allelic deletion of nm23 in human cancer. Cancer Res. 51: 2490-2493. PMid:2015608 Liang M, Zhang P and Fu J (2007). Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett. 258: 31-37. http://dx.doi.org/10.1016/j.canlet.2007.08.003 PMid:17868983 Marshall SF, Clarke CA, Deapen D, Henderson K, et al. (2010). Recent breast cancer incidence trends according to hormone therapy use: the California Teachers Study cohort. Breast Cancer Res. 2: R4. http://dx.doi.org/10.1186/bcr2467 PMid:20064209    PMCid:2880422 Platta CS, Greenblatt DY, Kunnimalaiyaan M and Chen H (2008). Valproic acid induces Notch1 signaling in small cell lung cancer cells. J Surg. Res. 148: 31-37. http://dx.doi.org/10.1016/j.jss.2008.03.008 PMid:18570928    PMCid:2900385 Shen WT, Wong TS, Chung WY, Wong MG, et al. (2005). Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 138: 979-984. http://dx.doi.org/10.1016/j.surg.2005.09.019 PMid:16360381 Swain SM, Jeong JH, Geyer CE Jr, Costantino JP, et al. (2010). Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. N. Engl. J. Med. 362: 2053-2065. http://dx.doi.org/10.1056/NEJMoa0909638 PMid:20519679    PMCid:2935316 Wu L, Li Z, Zhang Y, Zhang P, et al. (2008). Adenovirus-expressed human hyperpla- sia suppressor gene induces apoptosis in cancer cells. Mol. Cancer Ther. 7: 222-232. http://dx.doi.org/10.1158/1535-7163.MCT-07-0382 PMid:18202024
2011
W. Lei, Yao, R. X., Kang, X. H., Tang, S. H., Qiao, A. M., and Sun, M., Isolation and characterization of the anthocyanidin genes pal, f3h and dfr of Scutellaria viscidula (Lamiaceae), vol. 10, pp. 3385-3402, 2011.
Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics 22: 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770 PMid:16301204   Britsch L, Ruhnau-Brich B and Forkmann G (1992). Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J. Biol. Chem. 267: 5380-5387. PMid:1544919   Britsch L, Dedio J, Saedler H and Forkmann G (1993). Molecular characterization of flavanone 3 beta-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur. J. Biochem. 217: 745-754. http://dx.doi.org/10.1111/j.1432-1033.1993.tb18301.x PMid:8223617   Butelli E, Titta L, Giorgio M, Mock HP, et al. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 PMid:18953354   Combet C, Blanchet C, Geourjon C and Deleage G (2000). NPS@: network protein sequence analysis. Trends Biochem. Sci. 25: 147-150. http://dx.doi.org/10.1016/S0968-0004(99)01540-6   Ehrbar K, Hapfelmeier S, Stecher B and Hardt WD (2004). InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar Typhimurium. J. Bacteriol. 186: 1215-1219. http://dx.doi.org/10.1128/JB.186.4.1215-1219.2004 PMid:14762020 PMCid:344231   Holton TA and Cornish EC (1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083. PMid:12242398 PMCid:160913   Hrazdina G (1992). Compartmentation in Aromatic Metabolism, In: Recent Advances in Phytochemistry (Stafford HA and Ibrahim RK eds). Plenum Press, New York.   Ikeda M, Arai M, Lao DM and Shimizu T (2002). Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol. 2: 19-33. PMid:11808871   Jack S (1998). "Anthocyanin" (htm). Carnivorous Plant Newsletter (CPN) September 1998. Available at [http://www.carnivorousplants.org/cpn/samples/Science273anthocyanin.htm]. Accessed October 6, 2009.   Jensen JL, Gupta R, Blom N, Devos D, et al. (2002). Ab initio prediction of human orphan protein function from post-translational modifications and localization features. J. Mol. Biol. 319: 1257-1265. http://dx.doi.org/10.1016/S0022-2836(02)00379-0   Jensen LJ, Gupta R, Staerfeldt HH and Brunak S (2003). Prediction of human protein function according to Gene Ontology categories. Bioinformatics 19: 635-642. http://dx.doi.org/10.1093/bioinformatics/btg036 PMid:12651722   Kumar S, Tamura K, Jakobsen IB and Nei M (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245. http://dx.doi.org/10.1093/bioinformatics/17.12.1244 PMid:11751241   Kyte J and Doolittle RF (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. http://dx.doi.org/10.1016/0022-2836(82)90515-0   Lei W, Sun M, Luo KM, Shui XR, et al. (2009). Compute simulation to characterize structure and function of chalcone synthase from Scutellaria baicalensis Georgi. Mol. Biol. 43: 1082-1087. http://dx.doi.org/10.1134/S0026893309060144   Lei W, Tang SH, Luo KM and Sun M (2010). Molecular cloning and expression profiling of a chalcone synthase gene from hairy root cultures of Scutellaria viscidula Bunge. Genet. Mol. Biol. 33: 285-291. http://dx.doi.org/10.1590/S1415-47572010005000031 PMid:21637484 PMCid:3036846   Li YH, Sakiyama R, Maruyama H and Kawabata S (2001). Regulation of anthocyanin biosynthesis during fruit development in "Nyoho" strawberry. J. Japan. Soc. Hort. Sci. 70: 28-32. http://dx.doi.org/10.2503/jjshs.70.28   Lukacin R and Britsch L (1997). Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3-beta-hydroxylase. Eur. J. Biochem. 249: 748-757. http://dx.doi.org/10.1111/j.1432-1033.1997.t01-2-00748.x PMid:9395322   MacDonald MJ and D'Cunha GB (2007). A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85: 273- 282. http://dx.doi.org/10.1139/O07-018 PMid:17612622   Meyer P, Heidmann I, Forkmann G and Saedler H (1987). A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677-678. http://dx.doi.org/10.1038/330677a0 PMid:3683587   Nakashima J, Awano T, Takabe K and Fujita M (1997). Immunocytochemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells. Plant Cell Physiol. 38: 113-123. http://dx.doi.org/10.1093/oxfordjournals.pcp.a029140   O'Reilly C, Shepherd NS, Pereira A, Schwarz-Sommer Z, et al. (1985). Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. EMBO J. 4: 877-882. PMid:15938046 PMCid:554274   Röther D, Poppe L, Morlock G, Viergutz S, et al. (2002). An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Eur. J. Biochem. 269: 3065-3075. http://dx.doi.org/10.1046/j.1432-1033.2002.02984.x PMid:12071972   Song J and Wang Z (2009). Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol. Biol. Rep. 36: 939-952. http://dx.doi.org/10.1007/s11033-008-9266-8 PMid:18454352   Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. http://dx.doi.org/10.1093/nar/25.24.4876 PMid:9396791 PMCid:147148   Tian YL, Li JQ, Wang WH, Shi AP, et al. (2007). The germplasm resource and ornamental character of the Lamiaceae in Beijing. J. Beijing Univ. Agric. 22: 41-43.   Uddin JAFM, Hashimoto F, Miwa T, Ohbo K, et al. (2004). Seasonal variation in pigmentation and anthocyanidin phenetics in commercial Eustoma flowers. Sci. Horticult. 100: 103-115. http://dx.doi.org/10.1016/j.scienta.2003.07.002   Vincent D, Werner H, Heinrich SJR and Augustin S (1997). Dihydroflavonol 4-reductase activity in lignocellulosic tissues. Phytochemistry 45: 1415-1418. http://dx.doi.org/10.1016/S0031-9422(97)00128-3   Xu F, Cai R, Cheng SY, Du HW, et al. (2008). Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr. J. Biotechnol. 7: 721-729.   Yu LR, Liu ML and Wang XT (1984). Studies on the flavonoids of Scutellalia viscidula Bunge. Acta Pharm. Sin. 19: 397-398.   Zhou W, Huang CT, Gong YF, Feng QL, et al. (2010). Molecular cloning and expression analysis of an ANS gene encoding anthocyanidin synthase from purple-fleshed sweet potato [Ipomoea batatas (L.) Lam]. Plant Mol. Biol. Rep. 28: 112-121. http://dx.doi.org/10.1007/s11105-009-0133-0   Zuker A, Tzfira T, Ben-Meir H, Ovadis M, et al. (2002). Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed. 9: 33-41. http://dx.doi.org/10.1023/A:1019204531262