Publications

Found 9 results
Filters: Author is Y. Xiang  [Clear All Filters]
2012
Y. - N. Yang, Ji, W. - N., Ma, Y. - T., Li, X. - M., Chen, B. - D., Xiang, Y., and Liu, F., Activation of the ERK1/2 pathway by the CaMEK gene via adeno-associated virus serotype 9 in cardiomyocytes, vol. 11, pp. 4672-4681, 2012.
Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, et al. (1999). Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am. J. Physiol. 277: G631-G641. PMid:10484389   Bueno OF and Molkentin JD (2002). Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ. Res. 91: 776-781. http://dx.doi.org/10.1161/01.RES.0000038488.38975.1A PMid:12411391   Cho HS, Chang SH, Chung YS, Shin JY, et al. (2009). Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J. Vet. Sci. 10: 23-28. http://dx.doi.org/10.4142/jvs.2009.10.1.23 PMid:19255520 PMCid:2801106   Garrington TP and Johnson GL (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11: 211-218. http://dx.doi.org/10.1016/S0955-0674(99)80028-3   Hajjar RJ and Samulski RJ (2006). Heart failure: a silver bullet to treat heart failure. Gene Ther. 13: 997. http://dx.doi.org/10.1038/sj.gt.3302747 PMid:17262904   Hausenloy DJ, Tsang A and Yellon DM (2005). The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med. 15: 69-75. http://dx.doi.org/10.1016/j.tcm.2005.03.001 PMid:15885573   Kuno Y, Kondo K, Iwata H, Senga T, et al. (1998). Tumor-specific activation of mitogen-activated protein kinase in human colorectal and gastric carcinoma tissues. Jpn. J. Cancer Res. 89: 903-909. http://dx.doi.org/10.1111/j.1349-7006.1998.tb00647.x PMid:9818025   Lemieux E, Bergeron S, Durand V, Asselin C, et al. (2009). Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int. J. Cancer 125: 1575-1586. http://dx.doi.org/10.1002/ijc.24485 PMid:19462441   Li DY, Tao L, Liu H, Christopher TA, et al. (2006). Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 11: 923-930. http://dx.doi.org/10.1007/s10495-006-6305-6 PMid:16547595   Li XM, Ma YT, Yang YN, Liu F, et al. (2009). Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin. Exp. Pharmacol. Physiol. 36: 1054-1061. http://dx.doi.org/10.1111/j.1440-1681.2009.05243.x PMid:19566828   Licato LL and Brenner DA (1998). Analysis of signaling protein kinases in human colon or colorectal carcinomas. Dig. Dis. Sci. 43: 1454-1464. http://dx.doi.org/10.1023/A:1018894227169 PMid:9690379   Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, et al. (2004). MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109: 1938-1941. http://dx.doi.org/10.1161/01.CIR.0000127126.73759.23 PMid:15096454   Manning G, Whyte DB, Martinez R, Hunter T, et al. (2002). The protein kinase complement of the human genome. Science 298: 1912-1934. http://dx.doi.org/10.1126/science.1075762 PMid:12471243   Mebratu Y and Tesfaigzi Y (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8: 1168-1175. http://dx.doi.org/10.4161/cc.8.8.8147 PMid:19282669 PMCid:2728430   Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, et al. (2006). Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ. Res. 99: e3-e9. http://dx.doi.org/10.1161/01.RES.0000237661.18885.f6 PMid:16873720   Prasad KM, Xu Y, Yang Z, Acton ST, et al. (2011). Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther. 18: 43-52. http://dx.doi.org/10.1038/gt.2010.105 PMid:20703310 PMCid:2988989   Simpson P and Savion S (1982). Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ. Res. 50: 101- 116. http://dx.doi.org/10.1161/01.RES.50.1.101 PMid:7053872   Treisman R (1996). Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205-215. http://dx.doi.org/10.1016/S0955-0674(96)80067-6   Voisin L, Julien C, Duhamel S, Gopalbhai K, et al. (2008). Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer 8: 337. http://dx.doi.org/10.1186/1471-2407-8-337 PMid:19014680 PMCid:2596176   White JD, Thesier DM, Swain JB, Katz MG, et al. (2011). Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Ther. 18: 546-552. http://dx.doi.org/10.1038/gt.2010.168 PMid:21228882   Yue TL, Wang C, Gu JL, Ma XL, et al. (2000). Inhibition of extracellular signal-regulated kinase enhances Ischemia/ Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ. Res. 86: 692-699. http://dx.doi.org/10.1161/01.RES.86.6.692 PMid:10747006
W. - W. Wang, Ma, Q., Xiang, Y., Zhu, S. - W., and Cheng, B. - J., Genome-wide analysis of immunophilin FKBP genes and expression patterns in Zea mays, vol. 11, pp. 1690-1700, 2012.
Agredano-Moreno LT, Reyes dlC, Martinez-Castilla LP and Sanchez de JE (2007). Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Mol. Biosyst. 3: 794-802. http://dx.doi.org/10.1039/b705803a PMid:17940662   Brillantes AB, Ondrias K, Scott A, Kobrinsky E, et al. (1994). Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77: 513-523. http://dx.doi.org/10.1016/0092-8674(94)90214-3   Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, et al. (1989). Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476-478. http://dx.doi.org/10.1038/337476a0 PMid:2492638   Fruman DA, Burakoff SJ and Bierer BE (1994). Immunophilins in protein folding and immunosuppression. FASEB J. 8: 391-400. PMid:7513288   Galat A (2000). Sequence diversification of the FK506-binding proteins in several different genomes. Eur. J. Biochem. 267: 4945-4959. http://dx.doi.org/10.1046/j.1432-1327.2000.01509.x PMid:10931176   Galat A (2003). Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr. Top. Med. Chem. 3: 1315-1347. http://dx.doi.org/10.2174/1568026033451862 PMid:12871165   Gollan PJ and Bhave M (2010). Genome-wide analysis of genes encoding FK506-binding proteins in rice. Plant Mol. Biol. 72: 1-16. http://dx.doi.org/10.1007/s11103-009-9547-1 PMid:19768557   Gupta R, Mould RM, He Z and Luan S (2002). A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc. Natl. Acad. Sci. U. S. A. 99: 15806-15811. http://dx.doi.org/10.1073/pnas.222550399 PMid:12424338 PMCid:137797   Harding MW, Galat A, Uehling DE and Schreiber SL (1989). A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758-760. http://dx.doi.org/10.1038/341758a0 PMid:2477715   Hartl FU and Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. http://dx.doi.org/10.1126/science.1068408 PMid:11884745   He Z, Li L and Luan S (2004). Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol. 134: 1248-1267. http://dx.doi.org/10.1104/pp.103.031005 PMid:15047905 PMCid:419802   Heitman J, Movva NR and Hall MN (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905-909. http://dx.doi.org/10.1126/science.1715094 PMid:1715094   Holub EB (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2: 516-527. http://dx.doi.org/10.1038/35080508 PMid:11433358   Kamphausen T, Fanghanel J, Neumann D, Schulz B, et al. (2002). Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J. 32: 263-276. http://dx.doi.org/10.1046/j.1365-313X.2002.01420.x PMid:12410806   Luan S (1998). Immunophilins in animals and higher plants. Bot. Bull. Acad. Sin. 39: 217-223.   Marivet J, Frendo P and Burkard G (1995). DNA sequence analysis of a cyclophilin gene from maize: developmental expression and regulation by salicylic acid. Mol. Gen. Genet. 247: 222-228. http://dx.doi.org/10.1007/BF00705653 PMid:7753032   Michnick SW, Rosen MK, Wandless TJ, Karplus M, et al. (1991). Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science 252: 836-839. http://dx.doi.org/10.1126/science.1709301 PMid:1709301   Romano P, Gray J, Horton P and Luan S (2005). Plant immunophilins: functional versatility beyond protein maturation. New Phytol. 166: 753-769. http://dx.doi.org/10.1111/j.1469-8137.2005.01373.x PMid:15869639   Rulten SL, Kinloch RA, Tateossian H, Robinson C, et al. (2006). The human FK506-binding proteins: characterization of human FKBP19. Mamm. Genome 17: 322-331. http://dx.doi.org/10.1007/s00335-005-0127-7 PMid:16596453   Schreiber SL (1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283-287. http://dx.doi.org/10.1126/science.1702904 PMid:1702904   Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, et al. (1995). Molecular genetics of plant disease resistance. Science 268: 661-667. http://dx.doi.org/10.1126/science.7732374 PMid:7732374   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Uchida T, Fujimori F, Tradler T, Fischer G, et al. (1999). Identification and characterization of a 14 kDa human protein as a novel parvulin-like peptidyl prolyl cis/trans isomerase. FEBS Lett. 446: 278-282. http://dx.doi.org/10.1016/S0014-5793(99)00239-2   Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, et al. (1991). Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252: 839-842. http://dx.doi.org/10.1126/science.1709302 PMid:1709302   Zhou T, Wang Y, Chen JQ, Araki H, et al. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271: 402-415. http://dx.doi.org/10.1007/s00438-004-0990-z PMid:15014983
2011
Y. Q. Tan, Xie, C. X., Jiang, H. Y., Ye, H., Xiang, Y., Zhu, S. W., and Cheng, B. J., Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers, vol. 10, pp. 3472-3479, 2011.
Budak H, Shearman RC, Parmaksiz I and Dweikat I (2004). Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor. Appl. Genet. 109: 280-288. http://dx.doi.org/10.1007/s00122-004-1630-z PMid:15024466   Cai LQ, Li Z and Zhu SW (2005). Analysis on heterosis and combining ability of yield characters in opposite maize. Acta Laser Biol. Sin. 14: 95-102.   Cai LQ, Cheng BJ and Li Z (2006). Analysis on heterosis and combining ability of grain quality characters in opposite maize. Acta Laser Biol. Sin. 15: 154-160.   Cai YP, Tao HZ and Cheng BJ (1992). Transpiration and photosynthetic characteristics of opposite maize. J. Anhui Agr. Univ. 23: 474-477.   Frary A, Xu Y, Liu J, Mitchell S, et al. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312. http://dx.doi.org/10.1007/s00122-005-2023-7 PMid:15926074   Galinat WC (1971). Genetic investigation of a novel mutant of maize. Annu. Rev. Genet. 5: 447-478. http://dx.doi.org/10.1146/annurev.ge.05.120171.002311 PMid:16097663   Giulini A, Wang J and Jackson D (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031-1034. http://dx.doi.org/10.1038/nature02778 PMid:15329722   Jackson D and Hake S (1999). Control of phyllotaxy in maize by the abphyl1 gene. Development 126: 315-323. PMid:9847245   Jackson D, Veit B and Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413.   Kosambi DD (1944). The estimation of map distances from recombination values. Ann. Eugen. 12: 172-175.   Lander ES, Green P, Abrahamson J, Barlow A, et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3   Lincoln S, Daly M and Lander E (1992). Constructing Genetic Maps with Mapmarker/Exp 3.0. Whitehead Institute Technical Reports. 3rd ed. Whitehead Institute, Cambridge.   Liu ZW, Biyashev RM and Saghai Maroof MA (1996). Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Genet. 93: 869-876. http://dx.doi.org/10.1007/BF00224088   Liu ZX, Wang SC, Dai JR, Huang LJ, et al. (2003). Studies of genetic analysis and SSR linked marker location of gene resistance to Southern rust in inbred line P25 of maize. Yi Chuan Xue Bao 30: 706-710. PMid:14682237   Lucey MJ, McColl SM and Manning FC (1997). Method to reduce the quantity of ethidium bromide required to stain DNA in agarose gels. Biotechniques 23: 780-782. PMid:9383534   McCouch SR, Kochert G, Yu ZH, Wang ZY, et al. (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815-829. http://dx.doi.org/10.1007/BF00273666   Mohammadi SA, Prasanna BM, Sudan C and Singh NN (2002). A microsatellite marker based study of chromosomal regions and gene effects on yield and yield components in maize. Cell Mol. Biol. Lett. 7: 599-606. PMid:12378265   Moore CWE (1964). Distribution of Grasslands. In: Grasses and Grasslands (Barnard C, ed.). Macmillan, London, 182- 205.   Ramsay L, Macaulay M, degli IS, MacLean K, et al. (2000). A simple sequence repeat-based linkage map of barley. Genetics 156: 1997-2005. PMid:11102390 PMCid:1461369   Selvi A, Nair NV, Balasundaram N and Mohapatra T (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394-403. http://dx.doi.org/10.1139/g03-018 PMid:12834055   Simcox KD and Bennetzen JL (1993). The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83: 1326-1330. http://dx.doi.org/10.1094/Phyto-83-1326   Xie CX, Zhu SW and Cheng BJ (2002). Obtaining of SCAR markers of two dominant genes for opposite leaves and fruits trait of Zea mays. High Technol. Lett. 8: 38-41.
2010
X. Hu, Cheng, X., Jiang, H., Zhu, S., Cheng, B., and Xiang, Y., Genome-wide analysis of cyclins in maize (Zea mays), vol. 9, pp. 1490-1503, 2010.
Barroco RM, De Veylder L, Magyar Z, Engler G, et al. (2003). Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell Mol. Life Sci. 60: 401-412. http://dx.doi.org/10.1007/s000180300033 PMid:12678503   Booher RN, Alfa CE, Hyams JS and Beach DH (1989). The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485-497. http://dx.doi.org/10.1016/0092-8674(89)90429-7   Breyne P, Dreesen R, Vandepoele K, De Veylder L, et al. (2002). Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. U.S.A. 99: 14825-14830. http://dx.doi.org/10.1073/pnas.222561199 PMid:12393816 PMCid:137503   Cyr RJ and Palevitz BA (1995). Organization of cortical microtubules in plant cells. Curr. Opin. Cell Biol. 7: 65-71. http://dx.doi.org/10.1016/0955-0674(95)80046-8   Gutierrez C, Ramirez-Parra E, Castellano MM and del Pozo JC (2002). G(1) to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol. 5: 480-486. http://dx.doi.org/10.1016/S1369-5266(02)00301-1   Hata S, Kouchi H, Suzuka I and Ishii T (1991). Isolation and characterization of cDNA clones for plant cyclins. EMBO J. 10: 2681-2688. PMid:1831125 PMCid:452970   Horne MC, Goolsby GL, Donaldson KL, Tran D, et al. (1996). Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J. Biol. Chem. 271: 6050-6061. http://dx.doi.org/10.1074/jbc.271.11.6050 PMid:8626390   Jiang S and Ramachandran S (2004). Identification and molecular characterization of myosin gene family in Oryza sativa genome. Plant Cell Physiol. 45: 590-599. http://dx.doi.org/10.1093/pcp/pch061 PMid:15169941   John PCL, Mews M and Moore R (2001). Cyclin/CDK complexes: Their involvement in cell cycle progression and mitotic division. Protoplasma 216: 119-142. http://dx.doi.org/10.1007/BF02673865 PMid:11732181   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895   La H, Li J, Ji Z, Cheng Y, et al. (2006). Genome-wide analysis of cyclin family in rice (Oryza sativa L.). Mol. Genet. Genomics 275: 374-386. http://dx.doi.org/10.1007/s00438-005-0093-5 PMid:16435118   Lehner CF and O'Farrell PH (1990). The roles of Drosophila cyclins A and B in mitotic control. Cell 61: 535-547. http://dx.doi.org/10.1016/0092-8674(90)90535-M   Nakamura T, Sanokawa R, Sasaki YF, Ayusawa D, et al. (1995). Cyclin I: a new cyclin encoded by a gene isolated from human brain. Exp. Cell Res. 221: 534-542. http://dx.doi.org/10.1006/excr.1995.1406 PMid:7493655   Nieduszynski CA, Murray J and Carrington M (2002). Whole-genome analysis of animal A- and B-type cyclins. Genome Biol. 3: RESEARCH0070.   Nugent JH, Alfa CE, Young T and Hyams JS (1991). Conserved structural motifs in cyclins identified by sequence analysis. J. Cell Sci. 99 (Pt 3): 669-674. PMid:1834684   Obaya AJ and Sedivy JM (2002). Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol. Life Sci. 59: 126-142. http://dx.doi.org/10.1007/s00018-002-8410-1 PMid:11846025   Pagano M, Pepperkok R, Verde F, Ansorge W, et al. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J. 11: 961-971. PMid:1312467 PMCid:556537   Pines J (2002). Confirmational change. Nature 376: 294-295. http://dx.doi.org/10.1038/376294a0 PMid:7630391   Plowman GD, Sudarsanam S, Bingham J, Whyte D, et al. (1999). The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc. Natl. Acad. Sci. U.S.A. 96: 13603-13610. http://dx.doi.org/10.1073/pnas.96.24.13603 PMid:10570119 PMCid:24111   Potuschak T and Doerner P (2001). Cell cycle controls: genome-wide analysis in Arabidopsis. Curr. Opin. Plant Biol. 4: 501-506. http://dx.doi.org/10.1016/S1369-5266(00)00207-7   Quiroz-Figueroa F and Vázquez-Ramos JM (2006). Expression of maize D-type cyclins: comparison, regulation by phytohormones during seed germination and description of a new D cyclin. Physiol. Plantarum 128: 556-568. http://dx.doi.org/10.1111/j.1399-3054.2006.00769.x   Renaudin JP, Colasanti J, Rime H, Yuan Z, et al. (1994). Cloning of four cyclins from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins. Proc. Natl. Acad. Sci. U.S.A. 91: 7375-7379. http://dx.doi.org/10.1073/pnas.91.15.7375 PMid:8041798 PMCid:44402   Renaudin JP, Doonan JH, Freeman D, Hashimoto J, et al. (1996). Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003-1018. http://dx.doi.org/10.1007/BF00041384 PMid:9002599   Rossi V and Varotto S (2002). Insights into the G1/S transition in plants. Planta 215: 345-356. http://dx.doi.org/10.1007/s00425-002-0780-y PMid:12111215   Roudier F, Fedorova E, Gyorgyey J, Feher A, et al. (2000). Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. Plant J. 23: 73-83. http://dx.doi.org/10.1046/j.1365-313x.2000.00794.x PMid:10929103   Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115. http://dx.doi.org/10.1126/science.1178534 PMid:19965430   Shen WH (2002). The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci. 7: 505-511. http://dx.doi.org/10.1016/S1360-1385(02)02351-8   Sherr CJ and Roberts JM (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501-1512. http://dx.doi.org/10.1101/gad.13.12.1501 PMid:10385618   Smith LG (1999). Divide and conquer: cytokinesis in plant cells. Curr. Opin. Plant Biol. 2: 447-453. http://dx.doi.org/10.1016/S1369-5266(99)00022-9   Stals H and Inze D (2001). When plant cells decide to divide. Trends Plant Sci. 6: 359-364. http://dx.doi.org/10.1016/S1360-1385(01)02016-7   Sun Y, Flannigan BA and Setter TL (1999). Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Mol. Biol. 41: 245-258. http://dx.doi.org/10.1023/A:1006315625486 PMid:10579491   Trimarchi JM and Lees JA (2002). Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3: 11-20. http://dx.doi.org/10.1038/nrm714 PMid:11823794   Umeda M, Iwamoto N, Umeda-Hara C, Yamaguchi M, et al. (1999). Molecular characterization of mitotic cyclins in rice plants. Mol. Gen. Genet. 262: 230-238. http://dx.doi.org/10.1007/s004380051079 PMid:10517318   Vandepoele K, Raes J, De Veylder L, Rouze P, et al. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903-916. http://dx.doi.org/10.1105/tpc.010445 PMid:11971144 PMCid:150691   Vision TJ, Brown DG and Tanksley SD (2000). The origins of genomic duplications in Arabidopsis. Science 290: 2114-2117. http://dx.doi.org/10.1126/science.290.5499.2114 PMid:11118139   Wang GF, Kong HZ, Sun YJ and Zhang XH (2004). Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol. 135: 1084-1099. http://dx.doi.org/10.1104/pp.104.040436 PMid:15208425 PMCid:514142   Yamaguchi M, Fabian T, Sauter M, Bhalerao RP, et al. (2000). Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant J. 24: 11-20. http://dx.doi.org/10.1046/j.1365-313x.2000.00846.x PMid:11029700   Yu Y, Steinmetz A, Meyer D, Brown S, et al. (2003). The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15: 2763-2777. http://dx.doi.org/10.1105/tpc.015990 PMid:14615597 PMCid:282795
F. Chen, Zhu, S. W., Xiang, Y., Jiang, H. Y., and Cheng, B. J., Molecular marker-assisted selection of the ae alleles in maize, vol. 9, pp. 1074-1084, 2010.
Campbell MR, Brumm TJ and Glover DV (1997). Whole grain amylase analysis in maize using near-infrared transmittance spectroscopy. Cereal Chem. 74: 300-303. http://dx.doi.org/10.1094/CCHEM.1997.74.3.300   Ciurczak EW (1995). Use of near infrared spectroscopy in cereal products. Food Test. Anal. 5: 35-39.   Collard BC and Mackill DJ (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. http://dx.doi.org/10.1098/rstb.2007.2170 PMid:17715053 PMCid:2610170   Fergason V (1994). Specialty Corns. CRC Press, Boca Raton. PMid:7965894   Fisher DK, Gao M, Kim KN, Boyer CD, et al. (1996). Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol. 110: 611-619. PMid:12226207 PMCid:157757   Francia E, Tacconi G, Crosatti C, Barabaschi D, et al. (2005). Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult. 82: 317-342. http://dx.doi.org/10.1007/s11240-005-2387-z   Frisch M and Melchinger AE (2005). Selection theory for marker-assisted backcrossing. Genetics 170: 909-917. http://dx.doi.org/10.1534/genetics.104.035451 PMid:15802512 PMCid:1450430   Kim KN, Fisher DK, Gao M and Guiltinan MJ (1998). Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol. Biol. 38: 945-956. http://dx.doi.org/10.1023/A:1006057609995 PMid:9869401   Lande R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. PMid:1968875 PMCid:1203965   Leterrier M, Holappa LD, Broglie KE and Beckles DM (2008). Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol. 8: 98. http://dx.doi.org/10.1186/1471-2229-8-98 PMid:18826586 PMCid:2576272   Martinez C and Prodolliet J (1996). Determination of amylose in cereal and non-cereal starches by a colorimetric assay: collaborative study. Starch 48: 81-85. http://dx.doi.org/10.1002/star.19960480302   Morrison WR and Laignet B (1983). An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1: 9-20. http://dx.doi.org/10.1016/S0733-5210(83)80004-6   Nishi A, Nakamura Y, Tanaka N and Satoh H (2001). Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127: 459-472. http://dx.doi.org/10.1104/pp.010127 PMid:11598221 PMCid:125082   Orman BA and Schumann RA Jr (1991). Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J. Agric. Food Chem. 39: 883-886. http://dx.doi.org/10.1021/jf00005a015   Ribaut JM and Betrán J (1999). Single large-scale marker-assisted selection (SLS-MAS). Mol. Breed. 5: 531-541. http://dx.doi.org/10.1023/A:1009631718036   Rutenberg MW and Solarek D (1984). Starch: Chemistry and Technology. 2nd edn. Academic Press, Orlando.   Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, et al. (1994). Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 91: 5466-5470. http://dx.doi.org/10.1073/pnas.91.12.5466 PMid:8202509 PMCid:44016   Seetharaman K, Tziotis A, Borras F, White PJ, et al. (2001). Thermal and functional characterization of starch from Argentinean corn. Cereal Chem. 78: 379-386. http://dx.doi.org/10.1094/CCHEM.2001.78.4.379   Smith AM, Denyer K and Martin C (1997). The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 67-87. http://dx.doi.org/10.1146/annurev.arplant.48.1.67 PMid:15012257   Sun C, Sathish P, Ahlandsberg S and Jansson C (1998). The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol. 118: 37-49. http://dx.doi.org/10.1104/pp.118.1.37 PMid:9733524 PMCid:34872   Van Berloo R and Stam P (2001). Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor. Appl. Genet. 102: 1107-1112. http://dx.doi.org/10.1007/s001220000518   Vineyard ML, Bear RP, MacMasters MM and Deatherage WL (1958). Development of "Amylosemaize" - corn hybrids with high amylose starch. Agron. J. 50: 595-598. http://dx.doi.org/10.2134/agronj1958.00021962005000100009x   Wang YJ, White P, Pollak L and Jane J (1993). Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 70: 171-179.   Whistler RL (1958). Amylose development and progress. Chemurgic Dig. 17: 38.   Wu Y, Campbell M, Yen Y, Wicks Z III, et al. (2009). Genetic analysis of high amylose content in maize (Zea mays L.) using a triploid endosperm model. Euphytica 166: 155-164. http://dx.doi.org/10.1007/s10681-008-9798-y   Yun SH and Matheson NK (1993). Structures of the amylopectins of waxy, normal, amylose-extender, and wx:ae genotypes and of the phytoglycogen of maize. Carbohydr. Res. 243: 307-321. http://dx.doi.org/10.1016/0008-6215(93)87035-Q