Publications

Found 4 results
Filters: Author is J. Feng  [Clear All Filters]
2011
J. Feng, Li, L., Zhao, Y. - S., Tang, S. - Q., Yang, H. - B., and Liu, S. - X., Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population, vol. 10, pp. 3331-3337, 2011.
Ashfield-Watt PA, Welch AA, Day NE and Bingham SA (2004). Is 'five-a-day' an effective way of increasing fruit and vegetable intakes? Publ. Health Nutr. 7: 257-261. http://dx.doi.org/10.1079/PHN2003524 PMid:15003132   Cikojević D, Gluncić I and Klancnik M (2010). Cigarette smoking and progression of laryngeal lesions. Coll. Antropol. 34 (Suppl 1): 45-48. PMid:20402295   Ercan B, Ayaz L, Cicek D and Tamer L (2008). Role of CYP2C9 and CYP2C19 polymorphisms in patients with atherosclerosis. Cell Biochem. Funct. 26: 309-313. http://dx.doi.org/10.1002/cbf.1437 PMid:17868191   Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2008). The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension 52: 373-380. http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.114199 PMid:18574070   Fichtlscherer S, Dimmeler S, Breuer S, Busse R, et al. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109: 178-183. http://dx.doi.org/10.1161/01.CIR.0000105763.51286.7F PMid:14662709   Gauthier KM, Falck JR, Reddy LM and Campbell WB (2004). 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol. Res. 49: 515-524. http://dx.doi.org/10.1016/j.phrs.2003.09.014 PMid:15026029   Imig JD (2000). Epoxygenase metabolites. Epithelial and vascular actions. Mol. Biotechnol. 16: 233-251. http://dx.doi.org/10.1385/MB:16:3:233   Jiang JG, Chen CL, Card JW, Yang S, et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65: 4707-4715. http://dx.doi.org/10.1158/0008-5472.CAN-04-4173 PMid:15930289   Jiang JG, Ning YG, Chen C, Ma D, et al. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67: 6665-6674. http://dx.doi.org/10.1158/0008-5472.CAN-06-3643 PMid:17638876   Kurahashi K, Nishihashi T, Trandafir CC, Wang AM, et al. (2003). Diversity of endothelium-derived vasocontracting factors-arachidonic acid metabolites. Acta Pharmacol. Sin. 24: 1065-1069. PMid:14627486   Lundell K and Wikvall K (2008). Species-specific and age-dependent bile acid composition: aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr. Drug Metab. 9: 323-331. http://dx.doi.org/10.2174/138920008784220574 PMid:18473750   Node K, Ruan XL, Dai J, Yang SX, et al. (2001). Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J. Biol. Chem. 276: 15983-15989. http://dx.doi.org/10.1074/jbc.M100439200 PMid:11279071   Sun J, Sui X, Bradbury JA, Zeldin DC, et al. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ. Res. 90: 1020-1027. http://dx.doi.org/10.1161/01.RES.0000017727.35930.33 PMid:12016269   Ye YN, Liu ES, Shin VY, Wu WK, et al. (2004). Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J. Pharmacol. Exp. Ther. 308: 66-72. http://dx.doi.org/10.1124/jpet.103.058321 PMid:14569062
Y. Q. An, Lin, R. M., Wang, F. T., Feng, J., Xu, Y. F., and Xu, S. C., Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance, vol. 10, pp. 3576-3585, 2011.
Arun S, Minako I, Taichi Y, Kengo S, et al. (2004). A novel interaction between calreticulin and ubiquitin-like nuclear protein in rice. Plant Cell Physiol. 45: 684-692. http://dx.doi.org/10.1093/pcp/pch077   Chen AH (1998). Research achievement of calreticulin. Chem. Life 18: 22.   Chen F, Hayes PM, Mulrooney DM and Pan A (1994). Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell 6: 835-843. PMid:7914763 PMCid:160482   Chen MH, Tian GW, Gafni Y and Citovsky V (2005). Effects of calreticulin on viral cell-to-cell movement. Plant Physiol. 138: 1866-1876. http://dx.doi.org/10.1104/pp.105.064386 PMid:16006596 PMCid:1183378   Coughlan SJ, Hastings C and Winfrey R, Jr. (1997). Cloning and characterization of the calreticulin gene from Ricinus communis L. Plant Mol. Biol. 34: 897-911. http://dx.doi.org/10.1023/A:1005822327479 PMid:9290642   Denecke J, Ek B, Caspers M, Sinjorgo KMC, et al. (1993). Analysis of sorting signals responsible for the accumulation of soluble reticuloplasmins in the plant endoplasmic reticulum. J. Exp. Bot. 44: 213-221.   Denecke J, Carlsson LE, Vidal S, Hoglund AS, et al. (1995). The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7: 391-406. PMid:7773014 PMCid:160791   Dresselhaus T, Hagel C, Lorz H and Kranz E (1996). Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol. Biol. 31: 23-34. http://dx.doi.org/10.1007/BF00020603 PMid:8704156   Jia XY, Xu CY, Jing RL, Li RZ, et al. (2008). Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J. Exp. Bot. 59: 739-751. http://dx.doi.org/10.1093/jxb/erm369 PMid:18349049   Jia XY, He LH, Jing RL and Li RZ (2009). Calreticulin: conserved protein and diverse functions in plants. Physiol. Plant. 136: 127-138. http://dx.doi.org/10.1111/j.1399-3054.2009.01223.x PMid:19453510   Jin ZL, Hong JK, Yang KA, Koo JC, et al. (2005). Over-expression of Chinese cabbage calreticulin 1, BrCRT1, enhances shoot and root regeneration, but retards plant growth in transgenic tobacco. Transgenic Res. 14: 619-626. http://dx.doi.org/10.1007/s11248-005-5694-6 PMid:16245153   Komatsu S, Yamada E and Furukawa K (2009). Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36: 115-123. http://dx.doi.org/10.1007/s00726-008-0039-4 PMid:18278531   Kwiatkowski BA, Zielinska-Kwiatkowska AG, Migdalski A, Kleczkowski LA, et al. (1995). Cloning of two cDNAs encoding calnexin-like and calreticulin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains. Gene 165: 219-222. http://dx.doi.org/10.1016/0378-1119(95)00537-G   Li Z and Komatsu S (2000). Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice cultured suspension cells. Eur. J. Biochem. 267: 737-745. http://dx.doi.org/10.1046/j.1432-1327.2000.01052.x PMid:10651810   Li Z, Onodera H, Ugaki M, Tanaka H, et al. (2003). Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice. Biol. Pharm. Bull. 26: 256-261. http://dx.doi.org/10.1248/bpb.26.256 PMid:12576690   Lim CO, Kim HY, Kim MG, Lee SI, et al. (1996). Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol. 111: 577-588. http://dx.doi.org/10.1104/pp.111.2.577 PMid:8787028 PMCid:157869   Lu H, Zhao X, Wang W, Yin H, et al. (2010). Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohyd. Polym. 82: 136-142. http://dx.doi.org/10.1016/j.carbpol.2010.04.049   Matsuoka K, Seta K, Yamakawa Y, Okuyama T, et al. (1994). Covalent structure of bovine brain calreticulin. Biochem. J. 298 (Pt 2): 435-442. PMid:8135753 PMCid:1137959   Menegazzi P, Guzzo F, Baldan B, Mariani P, et al. (1993). Purification of calreticulin-like protein(s) from spinach leaves. Biochem. Biophys. Res. Commun. 190: 1130-1135. http://dx.doi.org/10.1006/bbrc.1993.1167 PMid:8439313   Michalak M, Groenendyk J, Szabo E, Gold LI, et al. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417: 651-666. http://dx.doi.org/10.1042/BJ20081847 PMid:19133842   Nelson DE, Glaunsinger B and Bohnert HJ (1997). Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana. Plant Physiol. 114: 29-37. http://dx.doi.org/10.1104/pp.114.1.29 PMid:9159940 PMCid:158275   Ostwald TJ and MacLennan DH (1974). Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249: 974-979. PMid:4272851   Persson S, Rosenquist M, Svensson K, Galvao R, et al. (2003). Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol. 133: 1385-1396. http://dx.doi.org/10.1104/pp.103.024943 PMid:14563927 PMCid:281633   Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, et al. (1999). Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J. 18: 6718-6729. http://dx.doi.org/10.1093/emboj/18.23.6718 PMid:10581245 PMCid:1171734   Shen W, Yan P, Gao L, Pan X, et al. (2010). Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol. Plant Pathol. 11: 335-346. http://dx.doi.org/10.1111/j.1364-3703.2009.00606.x PMid:20447282