Publications
Found 59 results
Filters: Author is H. Li [Clear All Filters]
“A high-throughput, high-quality plant genomic DNA extraction protocol”, vol. 12, pp. 4526-4539, 2013.
, “Identification and phylogenetic analysis of a sheep pox virus isolated from the Ningxia Hui Autonomous Region of China”, vol. 12, pp. 1670-1678, 2013.
, “Novel tetranucleotide microsatellite markers for Chinese beard eel (Cirrhimuraena chinensis Kaup)”, vol. 12. pp. 2779-2782, 2013.
, “Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L.”, vol. 12, pp. 5424-5432, 2013.
, “Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR”, vol. 12, pp. 6433-6441, 2013.
, “Relationship of common expression quantitative trait loci genes to the immune system”, vol. 12, pp. 6546-6553, 2013.
, “Polymorphic microsatellite loci in the rapid racerunner Eremias velox (Squamata: Lacertidae)”, vol. 11, pp. 4707-4710, 2012.
, Guo X, Dai X, Chen D, Papenfuss TJ, et al. (2011). Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Mol. Phylogenet. Evol. 61: 400-412.
http://dx.doi.org/10.1016/j.ympev.2011.06.022
PMid:21767655
Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood - based paternity inference in natural populations. Mol. Ecol. 7: 639-655.
http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x
PMid:9633105
Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Rousset F (2008). Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106.
http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
PMid:21585727
Rozen S and Skaletsky HJ (2000). PRIMER 3 on the WWW for General Users and for Biologist Programmers. In: Bioinformatics Methods and Protocols Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, Totowa, 365-386.
PMid:10547847
Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Vos P, Hogers R and Bleeker M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407- 4414.
http://dx.doi.org/10.1093/nar/23.21.4407
PMid:7501463 PMCid:307397
Wan LX, Sun SH, Jin YT, Yan YF, et al. (2007). Molecular phylogeography of the Chinese lacertids of the genus Eremias (Lacertidae) based on 16S rRNA mitochondrial DNA sequences. Amphibia-Reptilia 28: 33-41.
http://dx.doi.org/10.1163/156853807779798956
Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16.
http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x
PMid:11903900
Zhao KT (1999). Lacertidae. In: Fauna Sinica, Reptilia (Zhao EM, Zhao KT and Zhou KY, eds.). Vol. 2. Science Press, Beijing, 219-242.
“Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7”, vol. 11, pp. 956-965, 2012.
, Abasht B, Dekkers JC and Lamont SJ (2006). Review of quantitative trait loci identified in the chicken. Poult. Sci. 85: 2079-2096.
PMid:17135661
Ambo M, Moura AS, Ledur MC, Pinto LF, et al. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet. 40: 200-208.
http://dx.doi.org/10.1111/j.1365-2052.2008.01824.x
PMid:19170675
Andersson L and Georges M (2004). Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5: 202-212.
http://dx.doi.org/10.1038/nrg1294
PMid:14970822
Ankra-Badu GA, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, et al. (2010). Mapping QTL for growth and shank traits in chickens divergently selected for high or low body weight. Anim. Genet. 41: 400-405.
PMid:20096032
Atzmon G, Blum S, Feldman M, Lavi U, et al. (2007). Detection of agriculturally important QTLs in chickens and analysis of the factors affecting genotyping strategy. Cytogenet. Genome Res. 117: 327-337.
http://dx.doi.org/10.1159/000103195
PMid:17675875
Atzmon G, Blum S, Feldman M, Cahaner A, et al. (2008). QTLs detected in a multigenerational resource chicken population. J. Hered. 99: 528-538.
http://dx.doi.org/10.1093/jhered/esn030
PMid:18492652
Brockmann GA, Haley CS, Renne U, Knott SA, et al. (1998). Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150: 369-381.
PMid:9725853 PMCid:1460298
Campos RL, Nones K, Ledur MC, Moura AS, et al. (2009). Quantitative trait loci associated with fatness in a broiler-layer cross. Anim. Genet. 40: 729-736.
http://dx.doi.org/10.1111/j.1365-2052.2009.01910.x
PMid:19466938
Carlborg O, Kerje S, Schutz K, Jacobsson L, et al. (2003). A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13: 413-421.
http://dx.doi.org/10.1101/gr.528003
PMid:12618372 PMCid:430275
Choct M, Naylor A, Hutton O and Nolan J (2000). Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No. 98/123. Available at [https://rirdc.infoservices.com.au/downloads/98-123]. Accessed September 20, 2010.
Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
PMid:7851788 PMCid:1206241
Deeb N and Lamont SJ (2002). Genetic architecture of growth and body composition in unique chicken populations. J. Hered. 93: 107-118.
http://dx.doi.org/10.1093/jhered/93.2.107
PMid:12140270
Green P, Falls K and Crooks S (1990). Program CRI-MAP, Version 2.4. Washington University School of Medicine, St. Louis.
Hu ZL, Fritz ER and Reecy JM (2007). AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 35: D604-D609.
http://dx.doi.org/10.1093/nar/gkl946
PMid:17135205 PMCid:1781224
Ikeobi CO, Woolliams JA, Morrice DR, Law A, et al. (2002). Quantitative trait loci affecting fatness in the chicken. Anim. Genet. 33: 428-435.
http://dx.doi.org/10.1046/j.1365-2052.2002.00911.x
PMid:12464017
Jacobsson L, Park HB, Wahlberg P, Fredriksson R, et al. (2005). Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86: 115-125.
http://dx.doi.org/10.1017/S0016672305007767
PMid:16356285
Kerje S, Carlborg O, Jacobsson L, Schutz K, et al. (2003). The two-fold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34: 264-274.
http://dx.doi.org/10.1046/j.1365-2052.2003.01000.x
PMid:12873214
Knott SA, Marklund L, Haley CS, Andersson K, et al. (1998). Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069-1080.
PMid:9611214 PMCid:1460207
Lagarrigue S, Pitel F, Carre W, Abasht B, et al. (2006). Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet. Sel. Evol. 38: 85-97.
http://dx.doi.org/10.1186/1297-9686-38-1-85
PMCid:2689300
Le Bihan-Duval E, Millet N and Remignon H (1999). Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poult. Sci. 78: 822-826.
PMid:10438124
Le Mignon G, Pitel F, Gilbert H, Le Bihan-Duval E, et al. (2009). A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim. Genet. 40: 157-164.
http://dx.doi.org/10.1111/j.1365-2052.2008.01817.x
PMid:19243366
Liu X, Li H, Wang S, Hu X, et al. (2007). Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86: 1084-1089.
PMid:17495077
Marklund L, Nystrom PE, Stern S, Andersson-Eklund L, et al. (1999). Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82: 134-141.
http://dx.doi.org/10.1038/sj.hdy.6884630
PMid:10098263
McElroy JP, Kim JJ, Harry DE, Brown SR, et al. (2006). Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85: 593-605.
PMid:16615342
Nadaf J, Pitel F, Gilbert H, Duclos MJ, et al. (2009). QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol. Genomics 38: 241-249.
http://dx.doi.org/10.1152/physiolgenomics.90384.2008
PMid:19531576
National Research Council (1994). Nutrient Requirements of Poultry. Natl. Acad. Press, Washington.
Nones K, Ledur MC, Ruy DC, Baron EE, et al. (2006). Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100.
http://dx.doi.org/10.1111/j.1365-2052.2005.01387.x
PMid:16573522
Park HB, Jacobsson L, Wahlberg P, Siegel PB, et al. (2006). QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol. Genomics 25: 216-223.
http://dx.doi.org/10.1152/physiolgenomics.00113.2005
PMid:16390876
SAS Institute (2004). JMP User’s Guide. SAS Institute Inc., Cary.
Schmid M, Nanda I, Guttenbach M, Steinlein C, et al. (2000). First report on chicken genes and chromosomes 2000. Cytogenet. Cell Genet. 90: 169-218.
http://dx.doi.org/10.1159/000056772
Seaton G, Hernandez J, Grunchec JA, White I, et al. (2006). GridQTL: A Grid Portal for QTL Mapping of Compute Intensive Datasets. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 13-18.
Sewalem A, Morrice DM, Law A, Windsor D, et al. (2002). Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult. Sci. 81: 1775-1781.
PMid:12512565
Siwek M, Cornelissen SJ, Buitenhuis AJ, Nieuwland MG, et al. (2004). Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poult. Sci. 83: 853-859.
PMid:15206609
Spelman RJ and Bovenhuis H (1998). Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29: 77-84.
http://dx.doi.org/10.1046/j.1365-2052.1998.00238.x
PMid:9699266
Tercic D, Holcman A, Dovc P, Morrice DR, et al. (2009). Identification of chromosomal regions associated with growth and carcass traits in an F(3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40: 743-748.
http://dx.doi.org/10.1111/j.1365-2052.2009.01917.x
PMid:19466935
Wahlberg P, Carlborg O, Foglio M, Tordoir X, et al. (2009). Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10: 248.
http://dx.doi.org/10.1186/1471-2164-10-248
PMid:19473501 PMCid:2695486
Wang Q, Li H, Li N, Leng L, et al. (2006). Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult. Sci. 85: 429-434.
PMid:16553271
Zhang S, Li H and Shi H (2006). Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity. Poult. Sci. 85: 178-184.
PMid:16523611
Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006a). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poult. Sci 85: 1700-1711.
PMid:17012159
Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006b). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85: 1712-1721.
PMid:17012160
“Methylenetetrahydrofolate reductase genotypes and haplotypes associated with susceptibility to colorectal cancer in an eastern Chinese Han population”, vol. 10, pp. 3738-3746, 2011.
,
Boyle P and Langman JS (2000). ABC of colorectal cancer: Epidemiology. BMJ 321: 805-808.
http://dx.doi.org/10.1136/bmj.321.7264.805
PMid:11009523 PMCid:1118620
Boyle P and Ferlay J (2005). Cancer incidence and mortality in Europe, 2004. Ann. Oncol. 16: 481-488.
http://dx.doi.org/10.1093/annonc/mdi098
PMid:15718248
Brockton NT (2006). Localized depletion: the key to colorectal cancer risk mediated by MTHFR genotype and folate? Cancer Causes Control 17: 1005-1016.
http://dx.doi.org/10.1007/s10552-006-0051-5
PMid:16933051
Cao HX, Gao CM, Takezaki T, Wu JZ, et al. (2008). Genetic polymorphisms of methylenetetrahydrofolate reductase and susceptibility to colorectal cancer. Asian Pac. J. Cancer Prev. 9: 203-208.
PMid:18712959
Cheah PY (2009). Recent advances in colorectal cancer genetics and diagnostics. Crit. Rev. Oncol. Hematol. 69: 45-55.
http://dx.doi.org/10.1016/j.critrevonc.2008.08.001
PMid:18774731
Chen J, Giovannucci E, Kelsey K, Rimm EB, et al. (1996). A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 56: 4862-4864.
PMid:8895734
Choi SW and Mason JB (2000). Folate and carcinogenesis: an integrated scheme. J. Nutr. 130: 129-132.
PMid:10720158
Coleman MP, Quaresma M, Berrino F, Lutz JM, et al. (2008). Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 9: 730-756.
http://dx.doi.org/10.1016/S1470-2045(08)70179-7
Delgado-Enciso I, Martinez-Garza SG, Rojas-Martinez A, Ortiz-Lopez R, et al. (2001). 677T mutation of the MTHFR gene in adenomas and colorectal cancer in a population sample from the Northeastern Mexico. Preliminary results. Rev. Gastroenterol. Mex. 66: 32-37.
PMid:11464627
Duthie SJ (1999). Folic acid deficiency and cancer: mechanisms of DNA instability. Br. Med. Bull. 55: 578-592.
http://dx.doi.org/10.1258/0007142991902646
PMid:10746348
Duthie SJ, Narayanan S, Blum S, Pirie L, et al. (2000). Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr. Cancer 37: 245-251.
http://dx.doi.org/10.1207/S15327914NC372_18
PMid:11142099
Eichholzer M, Luthy J, Moser U and Fowler B (2001). Folate and the risk of colorectal, breast and cervix cancer: the epidemiological evidence. Swiss. Med. Wkly. 131: 539-549.
PMid:11759174
Frosst P, Blom HJ, Milos R, Goyette P, et al. (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10: 111-113.
http://dx.doi.org/10.1038/ng0595-111
PMid:7647779
Hayashi I, Sohn KJ, Stempak JM, Croxford R, et al. (2007). Folate deficiency induces cell-specific changes in the steady-state transcript levels of genes involved in folate metabolism and 1-carbon transfer reactions in human colonic epithelial cells. J. Nutr. 137: 607-613.
PMid:17311948
Huang Y, Han S, Li Y, Mao Y, et al. (2007). Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J. Hum. Genet. 52: 73-85.
http://dx.doi.org/10.1007/s10038-006-0082-5
PMid:17089070
Jacques PF, Bostom AG, Williams RR, Ellison RC, et al. (1996). Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93: 7-9.
http://dx.doi.org/10.1161/01.CIR.93.1.7
PMid:8616944
Jemal A, Siegel R, Ward E, Murray T, et al. (2007). Cancer statistics, 2007. CA Cancer J. Clin. 57: 43-66.
http://dx.doi.org/10.3322/canjclin.57.1.43
PMid:17237035
Jiang Q, Chen K, Ma X, Li Q, et al. (2005). Diets, polymorphisms of methylenetetrahydrofolate reductase, and the susceptibility of colon cancer and rectal cancer. Cancer Detect. Prev. 29: 146-154.
http://dx.doi.org/10.1016/j.cdp.2004.11.004
PMid:15829374
Kim YI (2003). Role of folate in colon cancer development and progression. J. Nutr. 133: 3731S-3739S.
PMid:14608107
Kono S and Chen K (2005). Genetic polymorphisms of methylenetetrahydrofolate reductase and colorectal cancer and adenoma. Cancer Sci. 96: 535-542.
http://dx.doi.org/10.1111/j.1349-7006.2005.00090.x
PMid:16128738
La Vecchia C, Negri E, Pelucchi C and Franceschi S (2002). Dietary folate and colorectal cancer. Int. J. Cancer 102: 545-547.
http://dx.doi.org/10.1002/ijc.10720
PMid:12432561
Larsson SC, Giovannucci E and Wolk A (2006a). Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology 131: 1271-1283.
http://dx.doi.org/10.1053/j.gastro.2006.08.010
PMid:17030196
Larsson SC, Hakansson N, Giovannucci E and Wolk A (2006b). Folate intake and pancreatic cancer incidence: a prospective study of Swedish women and men. J. Natl. Cancer Inst. 98: 407-413.
http://dx.doi.org/10.1093/jnci/djj094
PMid:16537833
Parkin DM, Bray F, Ferlay J and Pisani P (2001). Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94: 153-156.
http://dx.doi.org/10.1002/ijc.1440
PMid:11668491
Shannon B, Gnanasampanthan S, Beilby J and Iacopetta B (2002). A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut 50: 520-524.
http://dx.doi.org/10.1136/gut.50.4.520
PMid:11889073 PMCid:1773174
Singh K, Singh SK, Sah R, Singh I, et al. (2005). Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int. J. Androl. 28: 115-119.
http://dx.doi.org/10.1111/j.1365-2605.2004.00513.x
PMid:15811073
Song F, He M, Li H, Qian B, et al. (2008). A cancer incidence survey in Tianjin: the third largest city in China-between 1981 and 2000. Cancer Causes Control 19: 443-450.
http://dx.doi.org/10.1007/s10552-007-9105-6
PMid:18095173
Taioli E, Garza MA, Ahn YO, Bishop DT, et al. (2009). Meta- and pooled analyses of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and colorectal cancer: a HuGE-GSEC review. Am. J. Epidemiol. 170: 1207-1221.
http://dx.doi.org/10.1093/aje/kwp275
PMid:19846566 PMCid:2781761
Vollset SE, Igland J, Jenab M, Fredriksen A, et al. (2007). The association of gastric cancer risk with plasma folate, cobalamin, and methylenetetrahydrofolate reductase polymorphisms in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomarkers Prev. 16: 2416-2424.
http://dx.doi.org/10.1158/1055-9965.EPI-07-0256
PMid:18006931
Wang J, Gajalakshmi V, Jiang J, Kuriki K, et al. (2006). Associations between 5,10-methylenetetrahydrofolate reductase codon 677 and 1298 genetic polymorphisms and environmental factors with reference to susceptibility to colorectal cancer: a case-control study in an Indian population. Int. J. Cancer 118: 991-997.
http://dx.doi.org/10.1002/ijc.21438
PMid:16152599
Wei YS, Lu JC, Wang L, Lan P, et al. (2009). Risk factors for sporadic colorectal cancer in southern Chinese. World J. Gastroenterol. 15: 2526-2530.
PMid:19469004 PMCid:2686912
Weisberg I, Tran P, Christensen B, Sibani S, et al. (1998). A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 64: 169-172.
http://dx.doi.org/10.1006/mgme.1998.2714
PMid:9719624
Zeybek U, Yaylim I, Yilmaz H, Agachan B, et al. (2007). Methylenetetrahydrofolate reductase C677T polymorphism in patients with gastric and colorectal cancer. Cell Biochem. Funct. 25: 419-422.
http://dx.doi.org/10.1002/cbf.1317
PMid:16927418