Publications

Found 59 results
Filters: Author is H. Li  [Clear All Filters]
2012
H. Li, Zhou, Z. - S., Guo, J., and Lin, L. H., Polymorphic microsatellite loci in the rapid racerunner Eremias velox (Squamata: Lacertidae), vol. 11, pp. 4707-4710, 2012.
Guo X, Dai X, Chen D, Papenfuss TJ, et al. (2011). Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Mol. Phylogenet. Evol. 61: 400-412. http://dx.doi.org/10.1016/j.ympev.2011.06.022 PMid:21767655   Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood - based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105   Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Rousset F (2008). Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x PMid:21585727   Rozen S and Skaletsky HJ (2000). PRIMER 3 on the WWW for General Users and for Biologist Programmers. In: Bioinformatics Methods and Protocols Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, Totowa, 365-386. PMid:10547847   Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x   Vos P, Hogers R and Bleeker M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407- 4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Wan LX, Sun SH, Jin YT, Yan YF, et al. (2007). Molecular phylogeography of the Chinese lacertids of the genus Eremias (Lacertidae) based on 16S rRNA mitochondrial DNA sequences. Amphibia-Reptilia 28: 33-41. http://dx.doi.org/10.1163/156853807779798956   Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900   Zhao KT (1999). Lacertidae. In: Fauna Sinica, Reptilia (Zhao EM, Zhao KT and Zhou KY, eds.). Vol. 2. Science Press, Beijing, 219-242.
S. Z. Wang, Hu, X. X., Wang, Z. P., Li, X. C., Wang, Q. G., Wang, Y. X., Tang, Z. Q., and Li, H., Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7, vol. 11, pp. 956-965, 2012.
Abasht B, Dekkers JC and Lamont SJ (2006). Review of quantitative trait loci identified in the chicken. Poult. Sci. 85: 2079-2096. PMid:17135661 Ambo M, Moura AS, Ledur MC, Pinto LF, et al. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet. 40: 200-208. http://dx.doi.org/10.1111/j.1365-2052.2008.01824.x PMid:19170675 Andersson L and Georges M (2004). Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5: 202-212. http://dx.doi.org/10.1038/nrg1294 PMid:14970822 Ankra-Badu GA, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, et al. (2010). Mapping QTL for growth and shank traits in chickens divergently selected for high or low body weight. Anim. Genet. 41: 400-405. PMid:20096032 Atzmon G, Blum S, Feldman M, Lavi U, et al. (2007). Detection of agriculturally important QTLs in chickens and analysis of the factors affecting genotyping strategy. Cytogenet. Genome Res. 117: 327-337. http://dx.doi.org/10.1159/000103195 PMid:17675875 Atzmon G, Blum S, Feldman M, Cahaner A, et al. (2008). QTLs detected in a multigenerational resource chicken population. J. Hered. 99: 528-538. http://dx.doi.org/10.1093/jhered/esn030 PMid:18492652 Brockmann GA, Haley CS, Renne U, Knott SA, et al. (1998). Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150: 369-381. PMid:9725853    PMCid:1460298 Campos RL, Nones K, Ledur MC, Moura AS, et al. (2009). Quantitative trait loci associated with fatness in a broiler-layer cross. Anim. Genet. 40: 729-736. http://dx.doi.org/10.1111/j.1365-2052.2009.01910.x PMid:19466938 Carlborg O, Kerje S, Schutz K, Jacobsson L, et al. (2003). A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13: 413-421. http://dx.doi.org/10.1101/gr.528003 PMid:12618372    PMCid:430275 Choct M, Naylor A, Hutton O and Nolan J (2000). Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No. 98/123. Available at [https://rirdc.infoservices.com.au/downloads/98-123]. Accessed September 20, 2010. Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971. PMid:7851788    PMCid:1206241 Deeb N and Lamont SJ (2002). Genetic architecture of growth and body composition in unique chicken populations. J. Hered. 93: 107-118. http://dx.doi.org/10.1093/jhered/93.2.107 PMid:12140270 Green P, Falls K and Crooks S (1990). Program CRI-MAP, Version 2.4. Washington University School of Medicine, St. Louis. Hu ZL, Fritz ER and Reecy JM (2007). AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 35: D604-D609. http://dx.doi.org/10.1093/nar/gkl946 PMid:17135205    PMCid:1781224 Ikeobi CO, Woolliams JA, Morrice DR, Law A, et al. (2002). Quantitative trait loci affecting fatness in the chicken. Anim. Genet. 33: 428-435. http://dx.doi.org/10.1046/j.1365-2052.2002.00911.x PMid:12464017 Jacobsson L, Park HB, Wahlberg P, Fredriksson R, et al. (2005). Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86: 115-125. http://dx.doi.org/10.1017/S0016672305007767 PMid:16356285 Kerje S, Carlborg O, Jacobsson L, Schutz K, et al. (2003). The two-fold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34: 264-274. http://dx.doi.org/10.1046/j.1365-2052.2003.01000.x PMid:12873214 Knott SA, Marklund L, Haley CS, Andersson K, et al. (1998). Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069-1080. PMid:9611214    PMCid:1460207 Lagarrigue S, Pitel F, Carre W, Abasht B, et al. (2006). Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet. Sel. Evol. 38: 85-97. http://dx.doi.org/10.1186/1297-9686-38-1-85 PMCid:2689300 Le Bihan-Duval E, Millet N and Remignon H (1999). Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poult. Sci. 78: 822-826. PMid:10438124 Le Mignon G, Pitel F, Gilbert H, Le Bihan-Duval E, et al. (2009). A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim. Genet. 40: 157-164. http://dx.doi.org/10.1111/j.1365-2052.2008.01817.x PMid:19243366 Liu X, Li H, Wang S, Hu X, et al. (2007). Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86: 1084-1089. PMid:17495077 Marklund L, Nystrom PE, Stern S, Andersson-Eklund L, et al. (1999). Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82: 134-141. http://dx.doi.org/10.1038/sj.hdy.6884630 PMid:10098263 McElroy JP, Kim JJ, Harry DE, Brown SR, et al. (2006). Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85: 593-605. PMid:16615342 Nadaf J, Pitel F, Gilbert H, Duclos MJ, et al. (2009). QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol. Genomics 38: 241-249. http://dx.doi.org/10.1152/physiolgenomics.90384.2008 PMid:19531576 National Research Council (1994). Nutrient Requirements of Poultry. Natl. Acad. Press, Washington. Nones K, Ledur MC, Ruy DC, Baron EE, et al. (2006). Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100. http://dx.doi.org/10.1111/j.1365-2052.2005.01387.x PMid:16573522 Park HB, Jacobsson L, Wahlberg P, Siegel PB, et al. (2006). QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol. Genomics 25: 216-223. http://dx.doi.org/10.1152/physiolgenomics.00113.2005 PMid:16390876 SAS Institute (2004). JMP User’s Guide. SAS Institute Inc., Cary. Schmid M, Nanda I, Guttenbach M, Steinlein C, et al. (2000). First report on chicken genes and chromosomes 2000. Cytogenet. Cell Genet. 90: 169-218. http://dx.doi.org/10.1159/000056772 Seaton G, Hernandez J, Grunchec JA, White I, et al. (2006). GridQTL: A Grid Portal for QTL Mapping of Compute Intensive Datasets. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 13-18. Sewalem A, Morrice DM, Law A, Windsor D, et al. (2002). Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult. Sci. 81: 1775-1781. PMid:12512565 Siwek M, Cornelissen SJ, Buitenhuis AJ, Nieuwland MG, et al. (2004). Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poult. Sci. 83: 853-859. PMid:15206609 Spelman RJ and Bovenhuis H (1998). Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29: 77-84. http://dx.doi.org/10.1046/j.1365-2052.1998.00238.x PMid:9699266 Tercic D, Holcman A, Dovc P, Morrice DR, et al. (2009). Identification of chromosomal regions associated with growth and carcass traits in an F(3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40: 743-748. http://dx.doi.org/10.1111/j.1365-2052.2009.01917.x PMid:19466935 Wahlberg P, Carlborg O, Foglio M, Tordoir X, et al. (2009). Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10: 248. http://dx.doi.org/10.1186/1471-2164-10-248 PMid:19473501    PMCid:2695486 Wang Q, Li H, Li N, Leng L, et al. (2006). Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult. Sci. 85: 429-434. PMid:16553271 Zhang S, Li H and Shi H (2006). Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity. Poult. Sci. 85: 178-184. PMid:16523611 Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006a). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poult. Sci 85: 1700-1711. PMid:17012159 Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006b). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85: 1712-1721. PMid:17012160
2011
H. Li, Xu, W. L., Shen, H. L., Chen, Q. Y., Hui, L. L., Long, L. L., and Zhu, X. L., Methylenetetrahydrofolate reductase genotypes and haplotypes associated with susceptibility to colorectal cancer in an eastern Chinese Han population, vol. 10, pp. 3738-3746, 2011.
Boyle P and Langman JS (2000). ABC of colorectal cancer: Epidemiology. BMJ 321: 805-808. http://dx.doi.org/10.1136/bmj.321.7264.805 PMid:11009523 PMCid:1118620   Boyle P and Ferlay J (2005). Cancer incidence and mortality in Europe, 2004. Ann. Oncol. 16: 481-488. http://dx.doi.org/10.1093/annonc/mdi098 PMid:15718248   Brockton NT (2006). Localized depletion: the key to colorectal cancer risk mediated by MTHFR genotype and folate? Cancer Causes Control 17: 1005-1016. http://dx.doi.org/10.1007/s10552-006-0051-5 PMid:16933051   Cao HX, Gao CM, Takezaki T, Wu JZ, et al. (2008). Genetic polymorphisms of methylenetetrahydrofolate reductase and susceptibility to colorectal cancer. Asian Pac. J. Cancer Prev. 9: 203-208. PMid:18712959   Cheah PY (2009). Recent advances in colorectal cancer genetics and diagnostics. Crit. Rev. Oncol. Hematol. 69: 45-55. http://dx.doi.org/10.1016/j.critrevonc.2008.08.001 PMid:18774731   Chen J, Giovannucci E, Kelsey K, Rimm EB, et al. (1996). A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 56: 4862-4864. PMid:8895734   Choi SW and Mason JB (2000). Folate and carcinogenesis: an integrated scheme. J. Nutr. 130: 129-132. PMid:10720158   Coleman MP, Quaresma M, Berrino F, Lutz JM, et al. (2008). Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 9: 730-756. http://dx.doi.org/10.1016/S1470-2045(08)70179-7   Delgado-Enciso I, Martinez-Garza SG, Rojas-Martinez A, Ortiz-Lopez R, et al. (2001). 677T mutation of the MTHFR gene in adenomas and colorectal cancer in a population sample from the Northeastern Mexico. Preliminary results. Rev. Gastroenterol. Mex. 66: 32-37. PMid:11464627   Duthie SJ (1999). Folic acid deficiency and cancer: mechanisms of DNA instability. Br. Med. Bull. 55: 578-592. http://dx.doi.org/10.1258/0007142991902646 PMid:10746348   Duthie SJ, Narayanan S, Blum S, Pirie L, et al. (2000). Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr. Cancer 37: 245-251. http://dx.doi.org/10.1207/S15327914NC372_18 PMid:11142099   Eichholzer M, Luthy J, Moser U and Fowler B (2001). Folate and the risk of colorectal, breast and cervix cancer: the epidemiological evidence. Swiss. Med. Wkly. 131: 539-549. PMid:11759174   Frosst P, Blom HJ, Milos R, Goyette P, et al. (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10: 111-113. http://dx.doi.org/10.1038/ng0595-111 PMid:7647779   Hayashi I, Sohn KJ, Stempak JM, Croxford R, et al. (2007). Folate deficiency induces cell-specific changes in the steady-state transcript levels of genes involved in folate metabolism and 1-carbon transfer reactions in human colonic epithelial cells. J. Nutr. 137: 607-613. PMid:17311948   Huang Y, Han S, Li Y, Mao Y, et al. (2007). Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J. Hum. Genet. 52: 73-85. http://dx.doi.org/10.1007/s10038-006-0082-5 PMid:17089070   Jacques PF, Bostom AG, Williams RR, Ellison RC, et al. (1996). Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93: 7-9. http://dx.doi.org/10.1161/01.CIR.93.1.7 PMid:8616944   Jemal A, Siegel R, Ward E, Murray T, et al. (2007). Cancer statistics, 2007. CA Cancer J. Clin. 57: 43-66. http://dx.doi.org/10.3322/canjclin.57.1.43 PMid:17237035   Jiang Q, Chen K, Ma X, Li Q, et al. (2005). Diets, polymorphisms of methylenetetrahydrofolate reductase, and the susceptibility of colon cancer and rectal cancer. Cancer Detect. Prev. 29: 146-154. http://dx.doi.org/10.1016/j.cdp.2004.11.004 PMid:15829374   Kim YI (2003). Role of folate in colon cancer development and progression. J. Nutr. 133: 3731S-3739S. PMid:14608107   Kono S and Chen K (2005). Genetic polymorphisms of methylenetetrahydrofolate reductase and colorectal cancer and adenoma. Cancer Sci. 96: 535-542. http://dx.doi.org/10.1111/j.1349-7006.2005.00090.x PMid:16128738   La Vecchia C, Negri E, Pelucchi C and Franceschi S (2002). Dietary folate and colorectal cancer. Int. J. Cancer 102: 545-547. http://dx.doi.org/10.1002/ijc.10720 PMid:12432561   Larsson SC, Giovannucci E and Wolk A (2006a). Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology 131: 1271-1283. http://dx.doi.org/10.1053/j.gastro.2006.08.010 PMid:17030196   Larsson SC, Hakansson N, Giovannucci E and Wolk A (2006b). Folate intake and pancreatic cancer incidence: a prospective study of Swedish women and men. J. Natl. Cancer Inst. 98: 407-413. http://dx.doi.org/10.1093/jnci/djj094 PMid:16537833   Parkin DM, Bray F, Ferlay J and Pisani P (2001). Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94: 153-156. http://dx.doi.org/10.1002/ijc.1440 PMid:11668491   Shannon B, Gnanasampanthan S, Beilby J and Iacopetta B (2002). A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut 50: 520-524. http://dx.doi.org/10.1136/gut.50.4.520 PMid:11889073 PMCid:1773174   Singh K, Singh SK, Sah R, Singh I, et al. (2005). Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int. J. Androl. 28: 115-119. http://dx.doi.org/10.1111/j.1365-2605.2004.00513.x PMid:15811073   Song F, He M, Li H, Qian B, et al. (2008). A cancer incidence survey in Tianjin: the third largest city in China-between 1981 and 2000. Cancer Causes Control 19: 443-450. http://dx.doi.org/10.1007/s10552-007-9105-6 PMid:18095173   Taioli E, Garza MA, Ahn YO, Bishop DT, et al. (2009). Meta- and pooled analyses of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and colorectal cancer: a HuGE-GSEC review. Am. J. Epidemiol. 170: 1207-1221. http://dx.doi.org/10.1093/aje/kwp275 PMid:19846566 PMCid:2781761   Vollset SE, Igland J, Jenab M, Fredriksen A, et al. (2007). The association of gastric cancer risk with plasma folate, cobalamin, and methylenetetrahydrofolate reductase polymorphisms in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomarkers Prev. 16: 2416-2424. http://dx.doi.org/10.1158/1055-9965.EPI-07-0256 PMid:18006931   Wang J, Gajalakshmi V, Jiang J, Kuriki K, et al. (2006). Associations between 5,10-methylenetetrahydrofolate reductase codon 677 and 1298 genetic polymorphisms and environmental factors with reference to susceptibility to colorectal cancer: a case-control study in an Indian population. Int. J. Cancer 118: 991-997. http://dx.doi.org/10.1002/ijc.21438 PMid:16152599   Wei YS, Lu JC, Wang L, Lan P, et al. (2009). Risk factors for sporadic colorectal cancer in southern Chinese. World J. Gastroenterol. 15: 2526-2530. PMid:19469004 PMCid:2686912   Weisberg I, Tran P, Christensen B, Sibani S, et al. (1998). A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 64: 169-172. http://dx.doi.org/10.1006/mgme.1998.2714 PMid:9719624   Zeybek U, Yaylim I, Yilmaz H, Agachan B, et al. (2007). Methylenetetrahydrofolate reductase C677T polymorphism in patients with gastric and colorectal cancer. Cell Biochem. Funct. 25: 419-422. http://dx.doi.org/10.1002/cbf.1317 PMid:16927418

Pages