Publications

Found 13 results
Filters: Author is T. Tencomnao  [Clear All Filters]
2012
C. Ronpirin and Tencomnao, T., Dithranol downregulates expression of Id1 mRNA in human keratinocytes in vitro, vol. 11, pp. 3290-3297, 2012.
Afifi T, de GG, Huang C and Zhou Y (2005). Topical therapies for psoriasis: evidence-based review. Can. Fam. Physician 51: 519-525. PMid:15856971 PMCid:1472956   Benezra R, Davis RL, Lockshon D, Turner DL, et al. (1990). The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49-59. http://dx.doi.org/10.1016/0092-8674(90)90214-Y   Bjorntorp E, Parsa R, Thornemo M, Wennberg AM, et al. (2003). The helix-loop-helix transcription factor Id1 is highly expressed in psoriatic involved skin. Acta Derm. Venereol. 83: 403-409. http://dx.doi.org/10.1080/00015550310015806 PMid:14690332   Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, et al. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell. Biol. 106: 761-771. http://dx.doi.org/10.1083/jcb.106.3.761 PMid:2450098   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Cheng YJ, Tsai JW, Hsieh KC, Yang YC, et al. (2011). Id1 promotes lung cancer cell proliferation and tumor growth through Akt-related pathway. Cancer Lett. 307: 191-199. http://dx.doi.org/10.1016/j.canlet.2011.04.003 PMid:21536374   Farkas A, Kemeny L, Szony BJ, Bata-Csorgo Z, et al. (2001). Dithranol upregulates IL-10 receptors on the cultured human keratinocyte cell line HaCaT. Inflamm. Res. 50: 44-49. http://dx.doi.org/10.1007/s000110050723 PMid:11235021   George SE, Anderson RJ, Cunningham A, Donaldson M, et al. (2010). Evaluation of a range of anti-proliferative assays for the preclinical screening of anti-psoriatic drugs: a comparison of colorimetric and fluorimetric assays with the thymidine incorporation assay. Assay Drug Dev. Technol. 8: 389-400. http://dx.doi.org/10.1089/adt.2009.0224 PMid:20482335   Gry M, Rimini R, Stromberg S, Asplund A, et al. (2009). Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10: 365. http://dx.doi.org/10.1186/1471-2164-10-365 PMid:19660143 PMCid:2728742   Guo Y, Xiao P, Lei S, Deng F, et al. (2008). How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim. Biophys. Sin. 40: 426-436. http://dx.doi.org/10.1111/j.1745-7270.2008.00418.x   Hamajima Y, Komori M, Preciado DA, Choo DI, et al. (2010). The role of inhibitor of DNA-binding (Id1) in hyperproliferation of keratinocytes: the pathological basis for middle ear cholesteatoma from chronic otitis media. Cell Prolif. 43: 457-463. http://dx.doi.org/10.1111/j.1365-2184.2010.00695.x PMid:20887552 PMCid:2950310   Jacobson CC, Kumar S and Kimball AB (2011). Latitude and psoriasis prevalence. J. Am. Acad. Dermatol. 65: 870-873. http://dx.doi.org/10.1016/j.jaad.2009.05.047 PMid:21920244   Kamili QU and Menter A (2009). Topical treatment of psoriasis. Curr. Probl. Dermatol. 38: 37-58. http://dx.doi.org/10.1159/000232303 PMid:19710549   Lichtinghagen R, Musholt PB, Lein M, Römer A, et al. (2002). Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. Eur. Urol. 42: 398-406. http://dx.doi.org/10.1016/S0302-2838(02)00324-X   Ling MT, Lau TC, Zhou C, Chua CW, et al. (2005). Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis 26: 1668-1676. http://dx.doi.org/10.1093/carcin/bgi128 PMid:15905202   Ling YX, Tao J, Fang SF, Hui Z, et al. (2011). Downregulation of Id1 by small interfering RNA in prostate cancer PC3 cells in vivo and in vitro. Eur. J. Cancer Prev. 20: 9-17. http://dx.doi.org/10.1097/CEJ.0b013e32833ebaa0 PMid:20881502   Lister J, Forrester WC and Baron MH (1995). Inhibition of an erythroid differentiation switch by the helix-loop-helix protein Id1. J. Biol. Chem. 270: 17939-17946. http://dx.doi.org/10.1074/jbc.270.30.17939 PMid:7629100   Lyden D, Young AZ, Zagzag D, Yan W, et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401: 670-677. http://dx.doi.org/10.1038/44334 PMid:10537105   Mark EB, Jonsson M, Asp J, Wennberg AM, et al. (2006). Expression of genes involved in the regulation of p16 in psoriatic involved skin. Arch. Dermatol. Res. 297: 459-467. http://dx.doi.org/10.1007/s00403-006-0649-1 PMid:16552541   Massari ME and Murre C (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell Biol. 20: 429-440. http://dx.doi.org/10.1128/MCB.20.2.429-440.2000 PMid:10611221 PMCid:85097   McAllister SD, Christian RT, Horowitz MP, Garcia A, et al. (2007). Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther. 6: 2921-2927. http://dx.doi.org/10.1158/1535-7163.MCT-07-0371 PMid:18025276   McAllister SD, Murase R, Christian RT, Lau D, et al. (2011). Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res. Treat. 129: 37-47. http://dx.doi.org/10.1007/s10549-010-1177-4 PMid:20859676 PMCid:3410650   Ouyang XS, Wang X, Lee DT, Tsao SW, et al. (2002). Over expression of ID-1 in prostate cancer. J. Urol. 167: 2598-2602. http://dx.doi.org/10.1016/S0022-5347(05)65044-6   Pavithran K (2001). Psoriasis: topical treatment. Indian J. Dermatol. Venereol. Leprol. 67: 85. PMid:17664716   Ristow HJ (1996). Studies on stimulation of DNA synthesis with epidermal growth factor and insulin-like growth factor-I in cultured human keratinocytes. Growth Regul. 6: 96-109. PMid:8781986   Ronpirin C and Tencomnao T (2012). Effects of the antipsoriatic drug dithranol on E2A and caspase-9 gene expression in vitro. Genet. Mol. Res. 11: 412-420. http://dx.doi.org/10.4238/2012.February.17.3 PMid:22370944   Ronpirin C, Achariyakul M, Tencomnao T, Wongpiyabovorn J, et al. (2010). Up-regulation of Id1 in peripheral blood of psoriatic patients. Genet. Mol. Res. 9: 2239-2247. http://dx.doi.org/10.4238/vol9-4gmr963 PMid:21086260   Saelee C, Thongrakard V and Tencomnao T (2011). Effects of Thai medicinal herb extracts with anti-psoriatic activity on the expression on NF-kappaB signaling biomarkers in HaCaT keratinocytes. Molecules 16: 3908-3932. http://dx.doi.org/10.3390/molecules16053908 PMid:21555979   Sakurai D, Yamaguchi A, Tsuchiya N, Yamamoto K, et al. (2001). Expression of ID family genes in the synovia from patients with rheumatoid arthritis. Biochem. Biophys. Res. Commun. 284: 436-442. http://dx.doi.org/10.1006/bbrc.2001.4974 PMid:11394898   Schindl M, Schoppmann SF, Strobel T, Heinzl H, et al. (2003). Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin. Cancer Res. 9: 779-785. PMid:12576450   Schoppmann SF, Schindl M, Bayer G, Aumayr K, et al. (2003). Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int. J. Cancer 104: 677-682. http://dx.doi.org/10.1002/ijc.11009 PMid:12640673   Tencomnao T, Ronpirin C, Prasansuklab A and Poovorawan Y (2009). Decreased EGFR mRNA expression in response to antipsoriatic drug dithranol in vitro. Afr. J. Biotechnol. 8: 3141-3146.   Villano CM and White LA (2006). Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes. Toxicol. Appl. Pharmacol. 214: 219-229. http://dx.doi.org/10.1016/j.taap.2005.12.015 PMid:16494909   Wong YC, Wang X and Ling MT (2004). Id-1 expression and cell survival. Apoptosis 9: 279-289. http://dx.doi.org/10.1023/B:APPT.0000025804.25396.79 PMid:15258459
C. Ronpirin and Tencomnao, T., Effects of the antipsoriatic drug dithranol on E2A and caspase-9 gene expression in vitro, vol. 11, pp. 412-420, 2012.
Allen D, Winters E, Kenna PF, Humphries P, et al. (2008). Reference gene selection for real-time rtPCR in human epidermal keratinocytes. J. Dermatol. Sci. 49: 217-225. http://dx.doi.org/10.1016/j.jdermsci.2007.10.001 PMid:18061409 Bjorntorp E, Parsa R, Thornemo M, Wennberg AM, et al. (2003). The helix-loop-helix transcription factor Id1 is highly expressed in psoriatic involved skin. Acta Derm. Venereol. 83: 403-409. http://dx.doi.org/10.1080/00015550310015806 PMid:14690332 Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, et al. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106: 761-771. http://dx.doi.org/10.1083/jcb.106.3.761 PMid:2450098 Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3 Engel I and Murre C (2001). The function of E- and Id proteins in lymphocyte development. Nat. Rev. Immunol. 1: 193- 199. http://dx.doi.org/10.1038/35105060 PMid:11905828 Farkas A, Kemeny L, Szony BJ, Bata-Csorgo Z, et al. (2001). Dithranol upregulates IL-10 receptors on the cultured human keratinocyte cell line HaCaT. Inflamm. Res. 50: 44-49. http://dx.doi.org/10.1007/s000110050723 PMid:11235021 Henseleit U, Rosenbach T and Kolde G (1996). Induction of apoptosis in human HaCaT keratinocytes. Arch. Dermatol. Res. 288: 676-683. http://dx.doi.org/10.1007/BF02505277 PMid:8931870 Kee BL (2009). E and ID proteins branch out. Nat. Rev. Immunol. 9: 175-184. http://dx.doi.org/10.1038/nri2507 PMid:19240756 Kemeny L, Ruzicka T and Braun-Falco O (1990). Dithranol: a review of the mechanism of action in the treatment of psoriasis vulgaris. Skin Pharmacol. 3: 1-20. http://dx.doi.org/10.1159/000210836 Kuida K (2000). Caspase-9. Int. J. Biochem. Cell Biol. 32: 121-124. http://dx.doi.org/10.1016/S1357-2725(99)00024-2 Langlands K, Down GA and Kealey T (2000). Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. Cancer Res. 60: 5929-5933. PMid:11085505 Lowes MA, Bowcock AM and Krueger JG (2007). Pathogenesis and therapy of psoriasis. Nature 445: 866-873. http://dx.doi.org/10.1038/nature05663 PMid:17314973 Mark EB, Jonsson M, Asp J, Wennberg AM, et al. (2006). Expression of genes involved in the regulation of p16 in psoriatic involved skin. Arch. Dermatol. Res. 297: 459-467. http://dx.doi.org/10.1007/s00403-006-0649-1 PMid:16552541 Olson EN and Klein WH (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8: 1-8. http://dx.doi.org/10.1101/gad.8.1.1 Oztas P, Lortlar N, Oztas MO, Omeroglu S, et al. (2006). Caspase 9 is decreased in psoriatic epidermis. Acta Histochem. 108: 497-499. http://dx.doi.org/10.1016/j.acthis.2006.09.002 PMid:17034836 Pavithran K (2001). Psoriasis: topical treatment. Indian J. Dermatol. Venereol. Leprol. 67: 85. PMid:17664716 Perk J, Iavarone A and Benezra R (2005). Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer 5: 603-614. http://dx.doi.org/10.1038/nrc1673 PMid:16034366 Raymond AA, Mechin MC, Nachat R, Toulza E, et al. (2007). Nine procaspases are expressed in normal human epidermis, but only caspase-14 is fully processed. Br. J. Dermatol. 156: 420-427. http://dx.doi.org/10.1111/j.1365-2133.2006.07656.x PMid:17300228 Ronpirin C, Achariyakul M, Tencomnao T, Wongpiyabovorn J, et al. (2010). Up-regulation of Id1 in peripheral blood of psoriatic patients. Genet. Mol. Res. 9: 2239-2247. http://dx.doi.org/10.4238/vol9-4gmr963 PMid:21086260 Schon MP and Boehncke WH (2005). Psoriasis. N. Engl. J. Med. 352: 1899-1912. http://dx.doi.org/10.1056/NEJMra041320 PMid:15872205 Tencomnao T, Ronpirin C, Prasansuklab A and Poovorawan Y (2009). Decreased EGFR mRNA expression in response to antipsoriatic drug dithranol in vitro. Afr. J. Biotechnol. 8: 3141-3146. Yamamoto T and Nishioka K (2003). Alteration of the expression of Bcl-2, Bcl-x, Bax, Fas, and Fas ligand in the involved skin of psoriasis vulgaris following topical anthralin therapy. Skin Pharmacol. Appl. Skin Physiol. 16: 50-58. http://dx.doi.org/10.1159/000068289 Yan W, Young AZ, Soares VC, Kelley R, et al. (1997). High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell Biol. 17: 7317-7327. PMid:9372963    PMCid:232588
T. Lertwittayapon, Tencomnao, T., and Santiyanont, R., Inhibitory effect of alternatively spliced RAGEv1 on the expression of NF-kB and TNF-α in hepatocellular carcinoma cells, vol. 11, pp. 1712-1720, 2012.
Aggarwal BB and Shishodia S (2006). Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 71: 1397-1421. http://dx.doi.org/10.1016/j.bcp.2006.02.009 PMid:16563357   Ahmed N (2005). Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67: 3-21. http://dx.doi.org/10.1016/j.diabres.2004.09.004 PMid:15620429   Emanuele E, D'Angelo A, Tomaino C, Binetti G, et al. (2005). Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch. Neurol. 62: 1734-1736. http://dx.doi.org/10.1001/archneur.62.11.1734 PMid:16286548   Falcone C, Emanuele E, D'Angelo A, Buzzi MP, et al. (2005). Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler. Thromb. Vasc. Biol. 25: 1032-1037. http://dx.doi.org/10.1161/01.ATV.0000160342.20342.00 PMid:15731496   Fernandez-Botran R, Crespo FA and Sun X (2002). Soluble cytokine receptors in biological therapy. Expert. Opin. Biol. Ther. 2: 585-605. http://dx.doi.org/10.1517/14712598.2.6.585 PMid:12171504   Fisker S, Hansen B, Fuglsang J, Kristensen K, et al. (2004). Gene expression of the GH receptor in subcutaneous and intraabdominal fat in healthy females: relationship to GH-binding protein. Eur. J. Endocrinol. 150: 773-777. http://dx.doi.org/10.1530/eje.0.1500773 PMid:15191346   Geroldi D, Falcone C, Emanuele E, D'Angelo A, et al. (2005). Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J. Hypertens. 23: 1725-1729. http://dx.doi.org/10.1097/01.hjh.0000177535.45785.64 PMid:16093918   Hirata K, Takada M, Suzuki Y and Kuroda Y (2003). Expression of receptor for advanced glycation end products (RAGE) in human biliary cancer cells. Hepatogastroenterology 50: 1205-1207. PMid:14571699   Hiwatashi K, Ueno S, Abeyama K, Kubo F, et al. (2008). A novel function of the receptor for advanced glycation end-products (RAGE) in association with tumorigenesis and tumor differentiation of HCC. Ann. Surg. Oncol. 15: 923-933. http://dx.doi.org/10.1245/s10434-007-9698-8 PMid:18080716 PMCid:2234441   Hofmann MA, Drury S, Fu C, Qu W, et al. (1999). RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97: 889-901. http://dx.doi.org/10.1016/S0092-8674(00)80801-6   Hori O, Brett J, Slattery T, Cao R, et al. (1995). The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270: 25752-25761. PMid:7592757   Hudson BI, Carter AM, Harja E, Kalea AZ, et al. (2008). Identification, classification, and expression of RAGE gene splice variants. FASEB J. 22: 1572-1580. http://dx.doi.org/10.1096/fj.07-9909com PMid:18089847   Kalea AZ, See F, Harja E, Arriero M, et al. (2010). Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res. 70: 5628-5638. http://dx.doi.org/10.1158/0008-5472.CAN-10-0595 PMid:20570900 PMCid:2919303   Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, et al. (2005). Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care 28: 2716-2721. http://dx.doi.org/10.2337/diacare.28.11.2716 PMid:16249545   Koyama H, Shoji T, Yokoyama H, Motoyama K, et al. (2005). Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25: 2587-2593. http://dx.doi.org/10.1161/01.ATV.0000190660.32863.cd PMid:16224056   Lander HM, Tauras JM, Ogiste JS, Hori O, et al. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272: 17810-17814. http://dx.doi.org/10.1074/jbc.272.28.17810 PMid:9211935   Neeper M, Schmidt AM, Brett J, Yan SD, et al. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267: 14998-15004. PMid:1378843   Neumann A, Schinzel R, Palm D, Riederer P, et al. (1999). High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett. 453: 283-287. http://dx.doi.org/10.1016/S0014-5793(99)00731-0   Pullerits R, Bokarewa M, Dahlberg L and Tarkowski A (2005). Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Res. Ther. 7: R817-R824. http://dx.doi.org/10.1186/ar1749 PMid:15987483 PMCid:1175032   Rojas A and Morales MA (2004). Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sci. 76: 715-730. http://dx.doi.org/10.1016/j.lfs.2004.09.011 PMid:15581904   Rojas A, Figueroa H and Morales E (2010). Fueling inflammation at tumor microenvironment: the role of multiligand/ RAGE axis. Carcinogenesis 31: 334-341. http://dx.doi.org/10.1093/carcin/bgp322 PMid:20028726   Schmidt AM, Yan SD, Yan SF and Stern DM (2001). The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108: 949-955. PMid:11581294 PMCid:200958   Taguchi A, Blood DC, del TG, Canet A, et al. (2000). Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405: 354-360. http://dx.doi.org/10.1038/35012626 PMid:10830965   Yan SD, Schmidt AM, Anderson GM, Zhang J, et al. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 269: 9889-9897. PMid:8144582   Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, et al. (2003). Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem. J. 370: 1097-1109. http://dx.doi.org/10.1042/BJ20021371 PMid:12495433 PMCid:1223244
2011
P. Kittimongkolsuk, Tencomnao, T., and Santiyanont, R., Semi-quantitative detection of gene expression using bisbenzimide dye, vol. 10. pp. 3747-3759, 2011.
Ahmed MU, Idegami K, Chikae M, Kerman K, et al. (2007). Electrochemical DNA biosensor using a disposable electrochemical printed (DEP) chip for the detection of SNPs from unpurified PCR amplicons. Analyst 132: 431-438. http://dx.doi.org/10.1039/b615242b PMid:17471389   Ahmed MU, Hasan Q, Hossain MM, Saito M, et al. (2010). Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control 21: 599-605. http://dx.doi.org/10.1016/j.foodcont.2009.09.001   Bernard PS and Wittwer CT (2002). Real-time PCR technology for cancer diagnostics. Clin. Chem. 48: 1178-1185. PMid:12142370   Chaumpluk P, Chikae M, Takamura Y and Tamiya E (2006). Novel electrochemical identification and semi quantification of bovine constituents in feedstuffs. Sci. Tech. Adv. Mat. 7: 263-269. http://dx.doi.org/10.1016/j.stam.2006.03.001   Embrey KJ, Searle MS and Craik DJ (1993). Interaction of Hoechst 33258 with the minor groove of the A + T-rich DNA duplex d(GGTAATTACC)2 studied in solution by NMR spectroscopy. Eur. J. Biochem. 211: 437-447. http://dx.doi.org/10.1111/j.1432-1033.1993.tb17569.x PMid:7679636   Fisker S, Hansen B, Fuglsang J, Kristensen K, et al. (2004). Gene expression of the GH receptor in subcutaneous and intraabdominal fat in healthy females: relationship to GH-binding protein. Eur. J. Endocrinol. 150: 773-777. http://dx.doi.org/10.1530/eje.0.1500773 PMid:15191346   Hashimoto K, Ito K and Ishimori Y (1994). Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem. 66: 3830-3833. http://dx.doi.org/10.1021/ac00093a045 PMid:7528479   Horaková-Brazdilova P, Fojtova M, Vytras K and Fojta M (2008). Enzyme-Linked Electrochemical Detection of PCR-Amplified Nucleotide Sequences Using Disposable Screen-Printed Sensors. Applications in Gene Expression Monitoring. Sensors 8: 193-210. http://dx.doi.org/10.3390/s8010193   Hudson BI, Carter AM, Harja E, Kalea AZ, et al. (2008). Identification, classification, and expression of RAGE gene splice variants. FASEB J. 22: 1572-1580. http://dx.doi.org/10.1096/fj.07-9909com PMid:18089847   Kobayashi M, Kusakawa T, Saito M, Kaji S, et al. (2004). Electrochemical DNA quantification based on aggregation induced by Hoechst 33258. Electrochem. Commun. 6: 337-343. http://dx.doi.org/10.1016/j.elecom.2004.01.012   Latt SA and Stetten G (1976). Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem. 24: 24-33. http://dx.doi.org/10.1177/24.1.943439 PMid:943439   Lertwittayapon T (2010). Cloning of Soluble Receptor for Advanced Glycation Endproducts (sRAGE) Gene and Study the Effect of its Expressed Product on Liver Cancer Cell. Master's thesis. Chulalongkorn Uninversity, Bangkok.   Nagaev I and Smith U (2001). Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem. Biophys. Res. Commun. 285: 561-564. http://dx.doi.org/10.1006/bbrc.2001.5173 PMid:11444881   Scheller FW, Wollenberger U, Warsinke A and Lisdat F (2001). Research and development in biosensors. Curr. Opin. Biotechnol. 12: 35-40. http://dx.doi.org/10.1016/S0958-1669(00)00169-5   Schmidt AM, Yan SD, Yan SF and Stern DM (2001). The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108: 949-955. PMid:11581294 PMCid:200958   Stern DM, Yan SD, Yan SF and Schmidt AM (2002). Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res. Rev. 1: 1-15. http://dx.doi.org/10.1016/S0047-6374(01)00366-9   Sufen W, Tuzhi P and Yang CF (2002). Electrochemical studies for the interaction of DNA with an Irreversible redox compound-Hoechst 33258. Electroanalysis 14: 1648-1653. http://dx.doi.org/10.1002/elan.200290006   Zhang FL, Gao HQ and Shen L (2007). Inhibitory effect of GSPE on RAGE expression induced by advanced glycation end products in endothelial cells. J. Cardiovasc. Pharmacol. 50: 434-440. http://dx.doi.org/10.1097/FJC.0b013e3181342bfa PMid:18049312
2010
C. Ronpirin, Tencomnao, T., and Wongpiyabovorn, J., Association between the -1438A/G polymorphism of the serotonin 2A receptor gene and late-onset psoriasis in a Thai population, vol. 9, pp. 208-214, 2010.
Azmitia EC (2001). Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56: 413-424. http://dx.doi.org/10.1016/S0361-9230(01)00614-1   Barth JH and Baker H (1986). Generalized pustular psoriasis precipitated by trazodone in the treatment of depression. Br. J. Dermatol. 115: 629-630. http://dx.doi.org/10.1111/j.1365-2133.1986.tb05776.x   Bray NJ, Buckland PR, Hall H, Owen MJ, et al. (2004). The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Mol. Psychiatry 9: 109-114. http://dx.doi.org/10.1038/sj.mp.4001366 PMid:14699448   Collier DA, Arranz MJ, Li T, Mupita D, et al. (1997). Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet 350: 412. http://dx.doi.org/10.1016/S0140-6736(05)64135-9   Conn PJ, Sanders-Bush E, Hoffman BJ and Hartig PR (1986). A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. U. S. A. 83: 4086-4088. http://dx.doi.org/10.1073/pnas.83.11.4086   Griffiths CE and Richards HL (2001). Psychological influences in psoriasis. Clin. Exp. Dermatol. 26: 338-342. http://dx.doi.org/10.1046/j.1365-2230.2001.00834.x PMid:11422186   Guillet-Deniau I, Burnol AF and Girard J (1997). Identification and localization of a skeletal muscle serotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J. Biol. Chem. 272: 14825-14829. http://dx.doi.org/10.1074/jbc.272.23.14825 PMid:9169451   Hoyer D, Hannon JP and Martin GR (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71: 533-554. http://dx.doi.org/10.1016/S0091-3057(01)00746-8   Huang J, Li G, Xiang J, Yin D, et al. (2004). Immunohistochemical study of serotonin in lesions of psoriasis. Int. J. Dermatol. 43: 408-411. http://dx.doi.org/10.1111/j.1365-4632.2004.02195.x   Kling A, Seddighzadeh M, Arlestig L, Alfredsson L, et al. (2008). Genetic variations in the serotonin 5-HT2A receptor gene (HTR2A) are associated with rheumatoid arthritis. Ann. Rheum. Dis. 67: 1111-1115. http://dx.doi.org/10.1136/ard.2007.074948 PMid:18006541   León-Ponte M, Ahern GP and O'Connell PJ (2007). Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109: 3139-3146. http://dx.doi.org/10.1182/blood-2006-10-052787   Locala JA (2009). Current concepts in psychodermatology. Curr. Psychiatry Rep. 11: 211-218. http://dx.doi.org/10.1007/s11920-009-0033-x   Lowes MA, Bowcock AM and Krueger JG (2007). Pathogenesis and therapy of psoriasis. Nature 445: 866-873. http://dx.doi.org/10.1038/nature05663 PMid:17314973   Miller SA, Dykes DD and Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215   Mössner R, Stiens G, König IR, Schmidt D, et al. (2009). Analysis of a functional serotonin transporter promoter polymorphism in psoriasis vulgaris. Arch. Dermatol. Res. 301: 443-447. http://dx.doi.org/10.1007/s00403-008-0909-3 PMid:18979110   Myers RL, Airey DC, Manier DH, Shelton RC, et al. (2007). Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol. Psychiatry 61: 167-173. http://dx.doi.org/10.1016/j.biopsych.2005.12.018   Nedoszytko B, Szczerkowska-Dobosz A, Zablotna M, Glen J, et al. (2007). Associations of promoter region polymorphisms in the tumour necrosis factor-alpha gene and early-onset psoriasis vulgaris in a northern Polish population. Br. J. Dermatol. 157: 165-167. http://dx.doi.org/10.1111/j.1365-2133.2007.07993.x   Nordlind K, Thorslund K, Lonne-Rahm S, Mohabbati S, et al. (2006). Expression of serotonergic receptors in psoriatic skin. Arch. Dermatol. Res. 298: 99-106. http://dx.doi.org/10.1007/s00403-006-0652-6   O'Sullivan RL, Lipper G and Lerner EA (1998). The neuro-immuno-cutaneous-endocrine network: relationship of mind and skin. Arch. Dermatol. 134: 1431-1435. http://dx.doi.org/10.1001/archderm.134.11.1431   Ohara K, Nagai M, Tani K, Tsukamoto T, et al. (1999). Schizophrenia and the serotonin-2A receptor promoter polymorphism. Psychiatry Res. 85: 221-224. http://dx.doi.org/10.1016/S0165-1781(99)00002-5   Ono H, Shirakawa O, Nishiguchi N, Nishimura A, et al. (2001). Serotonin 2A receptor gene polymorphism is not associated with completed suicide. J. Psychiatr. Res. 35: 173-176. http://dx.doi.org/10.1016/S0022-3956(01)00015-2   Osborne SF, Stafford L and Orr KG (2002). Paroxetine-associated psoriasis. Am. J. Psychiatry 159: 2113. http://dx.doi.org/10.1176/appi.ajp.159.12.2113 PMid:12450972   Parsons MJ, D'Souza UM, Arranz MJ, Kerwin RW, et al. (2004). The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol. Psychiatry 56: 406-410. http://dx.doi.org/10.1016/j.biopsych.2004.06.020   Peters BP, Weissman FG and Gill MA (2000). Pathophysiology and treatment of psoriasis. Am. J. Health Syst. Pharm. 57: 645-659.   Reich K, Mossner R, Konig IR, Westphal G, et al. (2002). Promoter polymorphisms of the genes encoding tumor necrosis factor-alpha and interleukin-1beta are associated with different subtypes of psoriasis characterized by early and late disease onset. J. Invest. Dermatol. 118: 155-163. http://dx.doi.org/10.1046/j.0022-202x.2001.01642.x   Schön MP and Boehncke WH (2005). Psoriasis. N. Engl. J. Med. 352: 1899-1912. http://dx.doi.org/10.1056/NEJMra041320   Serretti A, Drago A and De Ronchi D (2007). HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr. Med. Chem. 14: 2053-2069. http://dx.doi.org/10.2174/092986707781368450   Smith AK, Dimulescu I, Falkenberg VR, Narasimhan S, et al. (2008). Genetic evaluation of the serotonergic system in chronic fatigue syndrome. Psychoneuroendocrinology 33: 188-197. http://dx.doi.org/10.1016/j.psyneuen.2007.11.001   Sparkes RS, Lan N, Klisak I, Mohandas T, et al. (1991). Assignment of a serotonin 5HT-2 receptor gene (HTR2) to human chromosome 13q14-q21 and mouse chromosome 14. Genomics 9: 461-465. http://dx.doi.org/10.1016/0888-7543(91)90411-7   Stefulj J, Jernej B, Cicin-Sain L, Rinner I, et al. (2000). mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav. Immun. 14: 219-224. http://dx.doi.org/10.1006/brbi.1999.0579   Tan Pei Lin L and Kwek SK (2009). Onset of psoriasis during therapy with fluoxetine. Gen. Hosp. Psychiatry (in press) DOI: 10.1016/j.genhosppsych.2009.08.008. http://dx.doi.org/10.1016/j.genhosppsych.2009.08.008   Tencomnao T and Boonmalert R (2009). Misgenotyping of dopamine receptor D1 gene -48A/G polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B: 447-449. http://dx.doi.org/10.1002/ajmg.b.30814   Tencomnao T, Ketboonlue K, Wongpiyabavorn J, Ronpirin C, et al. (2007). Analysis of autoantibodies to serotonin and serotonin levels in psoriasis. Chin. Med. J. 120: 146.   Turecki G, Briere R, Dewar K, Antonetti T, et al. (1999). Prediction of level of serotonin 2A receptor binding by serotonin receptor 2A genetic variation in postmortem brain samples from subjects who did or did not commit suicide. Am. J. Psychiatry 156: 1456-1458.   Warren JT Jr, Peacock ML, Rodriguez LC and Fink JK (1993). An MspI polymorphism in the hyman serotonin receptor gene (HTR2): detection by DGGE and RFLP analysis. Hum. Mol. Genet. 2: 338. http://dx.doi.org/10.1093/hmg/2.3.338   Wongpiyabovorn J, Yooyongsatit S, Ruchusatsawat K, Avihingsanon Y, et al. (2008a). Association of the CTG (-2578/-460/+405) haplotype within the vascular endothelial growth factor gene with early-onset psoriasis. Tissue Antigens 72: 458-463. http://dx.doi.org/10.1111/j.1399-0039.2008.01134.x   Wongpiyabovorn J, Hirankarn N, Ruchusatsawat K, Yooyongsatit S, et al. (2008b). Association of the interleukin-10 distal promoter (-2763A/C) polymorphism with late-onset psoriasis. Clin. Exp. Dermatol. 33: 186-189. http://dx.doi.org/10.1111/j.1365-2230.2007.02628.x   Wu J, Chen F, Zhang X, Li Y, et al. (2009). Association of MIF promoter polymorphisms with psoriasis in a Han population in northeastern China. J. Dermatol. Sci. 53: 212-215. http://dx.doi.org/10.1016/j.jdermsci.2008.11.002   Ying S, Liu XM, Sun YM and Pan SH (2009). Genetic polymorphism c.1438A>G of the 5-HT(2A) receptor is associated with abdominal obesity in Chinese Northern Han population. Mol. Biol. Rep. 36: 91-95. http://dx.doi.org/10.1007/s11033-007-9155-6   Zhang J, Shen Y, He G, Li X, et al. (2008). Lack of association between three serotonin genes and suicidal behavior in Chinese psychiatric patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 32: 467-471. http://dx.doi.org/10.1016/j.pnpbp.2007.09.019
N. Pattarachotanant, Sritharathikhun, T., Suttirat, S., and Tencomnao, T., Association of C/T polymorphism in intron 14 of the dopamine transporter gene (rs40184) with major depression in a northeastern Thai population, vol. 9, pp. 565-572, 2010.
Bonhomme N and Esposito E (1998). Involvement of serotonin and dopamine in the mechanism of action of novel antidepressant drugs: a review. J. Clin. Psychopharmacol. 18: 447-454. http://dx.doi.org/10.1097/00004714-199812000-00005 PMid:9864076   Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, et al. (1995). The dopamine transporter: immunochemical characterization and localization in brain. J. Neurosci. 15: 1714-1723. PMid:7534339   Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, et al. (1995). Association of attention-deficit disorder and the dopamine transporter gene. Am. J. Hum. Genet. 56: 993-998. PMid:7717410 PMCid:1801209   Davidson RJ, Pizzagalli D and Nitschke JB (2002). The Representation and Regulation of Emotion in Depression. Perspectives from Affective Neuroscience. In: Handbook of Depression (Gotlib IH and Hammen CL, eds.). Guilford, New York, 219-244. PMid:12109826   Dunlop BW and Nemeroff CB (2007). The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 64: 327-337. http://dx.doi.org/10.1001/archpsyc.64.3.327 PMid:17339521   Frisch A, Postilnick D, Rockah R, Michaelovsky E, et al. (1999). Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol. Psychiatry 4: 389-392. http://dx.doi.org/10.1038/sj.mp.4000536 PMid:10483058   Giros B, el Mestikawy S, Godinot N, Zheng K, et al. (1992). Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol. Pharmacol. 42: 383-390. PMid:1406597   Haeffel GJ, Getchell M, Koposov RA, Yrigollen CM, et al. (2008). Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees. Psychol. Sci. 19: 62-69. http://dx.doi.org/10.1111/j.1467-9280.2008.02047.x PMid:18181793   Haliassos A, Chomel JC, Grandjouan S, Kruh J, et al. (1989a). Detection of minority point mutations by modified PCR technique: a new approach for a sensitive diagnosis of tumor-progression markers. Nucleic Acids Res. 17: 8093-8099. http://dx.doi.org/10.1093/nar/17.20.8093 PMid:2573037 PMCid:334949   Haliassos A, Chomel JC, Tesson L, Baudis M, et al. (1989b). Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res. 17: 3606. http://dx.doi.org/10.1093/nar/17.9.3606 PMid:2726503 PMCid:317818   Mathers CD and Loncar D (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS. Med. 3: e442. http://dx.doi.org/10.1371/journal.pmed.0030442 PMid:17132052 PMCid:1664601   Mick E, Kim JW, Biederman J, Wozniak J, et al. (2008). Family based association study of pediatric bipolar disorder and the dopamine transporter gene (SLC6A3). Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B: 1182-1185. http://dx.doi.org/10.1002/ajmg.b.30745 PMid:18361424   Murray CJ and Lopez AD (1997). Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349: 1436-1442. http://dx.doi.org/10.1016/S0140-6736(96)07495-8   Nierenberg AA, Dougherty D and Rosenbaum JF (1998). Dopaminergic agents and stimulants as antidepressant augmentation strategies. J. Clin. Psychiatry 59 (Suppl 5): 60-63. PMid:9635549   Randrup A, Munkvad I, Pog R, Gerlach J, et al. (1975). Mania, Depression, and Brain Dopamine. In: Current Developments in Psychopharmacology. Vol. 2 (Essman W and Valzelli L, eds.). Spectrum Publications, New York, 206-248.   Robinson DS (2007). The role of dopamine and norepinephrine in depression. Prim. Psychiatry 14: 21-23.   Sullivan PF, Neale MC and Kendler KS (2000). Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157: 1552-1562. http://dx.doi.org/10.1176/appi.ajp.157.10.1552 PMid:11007705   Tencomnao T and Boonmalert R (2009). Misgenotyping of dopamine receptor D1 gene -48A/G polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B: 447-449. http://dx.doi.org/10.1002/ajmg.b.30814 PMid:18615540   Todt U, Netzer C, Toliat M, Heinze A, et al. (2009). New genetic evidence for involvement of the dopamine system in migraine with aura. Hum. Genet. 125: 265-279. http://dx.doi.org/10.1007/s00439-009-0623-z PMid:19152006   Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, et al. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14: 1104-1106. http://dx.doi.org/10.1016/S0888-7543(05)80138-7   Xiao J, Xin X, Luan X, Wei D, et al. (2006). A modified simple RFLP-PCR method for single nucleotide polymorphism (SNP) typing. Genet. Mol. Biol. 29: 562-565. http://dx.doi.org/10.1590/S1415-47572006000300028   Zhang R, Zhu Z, Zhu H, Nguyen T, et al. (2005). SNP Cutter: a comprehensive tool for SNP PCR-RFLP assay design. Nucleic Acids Res. 33: W489-W492. http://dx.doi.org/10.1093/nar/gki358 PMid:15980518 PMCid:1160119   Zhou K, Chen W, Buitelaar J, Banaschewski T, et al. (2008). Genetic heterogeneity in ADHD: DAT1 gene only affects probands without CD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B: 1481-1487. http://dx.doi.org/10.1002/ajmg.b.30644 PMid:18553640
W. Sangkitikomol, Tencomnao, T., and Rocejanasaroj, A., Effects of Thai black sticky rice extract on oxidative stress and lipid metabolism gene expression in HepG2 cells, vol. 9, pp. 2086-2095, 2010.
Auger C, Caporiccio B, Landrault N, Teissedre PL, et al. (2002). Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetus auratus). J. Nutr. 132: 1207-1213. PMid:12042435   Bays H and Stein EA (2003). Pharmacotherapy for dyslipidaemia - current therapies and future agents. Expert. Opin. Pharmacother. 4: 1901-1938. http://dx.doi.org/10.1517/14656566.4.11.1901 PMid:14596646   Beatty ER, O'Reilly JD, England TG, McAnlis GT, et al. (2000). Effect of dietary quercetin on oxidative DNA damage in healthy human subjects. Br. J. Nutr. 84: 919-925. PMid:11177210   Chen C, Yu R, Owuor ED and Kong AN (2000). Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 23: 605-612. http://dx.doi.org/10.1007/BF02975249 PMid:11156183   Galati G and O'Brien PJ (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37: 287-303. http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.034 PMid:15223063   Halliwell B and Gutteridge JMC (2001). Free Radicals in Biology and Medicine. Oxford Science Publication, Thomson Press Ltd., India. PMCid:1753663   Kaul D, Shukla AR, Sikand K and Dhawan V (2005). Effect of herbal polyphenols on atherogenic transcriptome. Mol. Cell Biochem. 278: 177-184. http://dx.doi.org/10.1007/s11010-005-7497-8 PMid:16180103   Kong AN, Yu R, Chen C, Mandlekar S, et al. (2000). Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharm. Res. 23: 1-16. http://dx.doi.org/10.1007/BF02976458 PMid:10728649   LeFevre M, Wiles JE, Zhang X, Howard LR, et al. (2008). Gene expression microarray analysis of the effects of grape anthocyanins in mice: a test of a hypothesis-generating paradigm. Metabolism 57: S52-S57. http://dx.doi.org/10.1016/j.metabol.2008.03.005 PMid:18555855 PMCid:2577880   Ling WH, Wang LL and Ma J (2002). Supplementation of the black rice outer layer fraction to rabbits decreases atherosclerotic plaque formation and increases antioxidant status. J. Nutr. 132: 20-26. PMid:11773502   Niering P, Michels G, Watjen W, Ohler S, et al. (2005). Protective and detrimental effects of kaempferol in rat H4IIE cells: implication of oxidative stress and apoptosis. Toxicol. Appl. Pharmacol. 209: 114-122. http://dx.doi.org/10.1016/j.taap.2005.04.004 PMid:16112156   Owen AJ, Roach PD and Abbey M (2004). Regulation of low-density lipoprotein receptor activity by estrogens and phytoestrogens in a HepG2 cell model. Ann. Nutr. Metab. 48: 269-275. http://dx.doi.org/10.1159/000080462 PMid:15331887   Pal S, Thomson AM, Bottema CD and Roach PD (2003). Alpha-tocopherol modulates the low density lipoprotein receptor of human HepG2 cells. Nutr. J. 2: 3. http://dx.doi.org/10.1186/1475-2891-2-3 PMid:12773205 PMCid:156638   Powell EE and Kroon PA (1994). Low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in human mononuclear leukocytes is regulated coordinately and parallels gene expression in human liver. J. Clin. Invest. 93: 2168-2174. http://dx.doi.org/10.1172/JCI117213 PMid:8182149 PMCid:294355   Sangkitikomol W, Tencomnao T and Rocejanasaroj A (2008). Comparison of total antioxidants of red rice, black rice and black sticky rice. J. Nut. Assoc. Thailand 43: 13-21.   Tian B, Sun Z, Xu Z and Hua Y (2007). Chemiluminescence analysis of the prooxidant and antioxidant effects of epigallocatechin-3-gallate. Asia Pac. J. Clin. Nutr. 16 (Suppl 1): 153-157. PMid:17392095   Twentyman PR and Luscombe M (1987). A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 56: 279-285. http://dx.doi.org/10.1038/bjc.1987.190 PMid:3663476 PMCid:2002206   Wang H and Joseph JA (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27: 612-616. http://dx.doi.org/10.1016/S0891-5849(99)00107-0   Wang Q, Han P, Zhang M, Xia M, et al. (2007). Supplementation of black rice pigment fraction improves antioxidant and anti-inflammatory status in patients with coronary heart disease. Asia Pac. J. Clin. Nutr. 16 (Suppl 1): 295-301. PMid:17392122   Wätjen W, Michels G, Steffan B, Niering P, et al. (2005). Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J. Nutr. 135: 525-531. PMid:15735088   Williams RJ, Spencer JP and Rice-Evans C (2004). Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36: 838-849. http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001 PMid:15019969   Xia M, Ling WH, Ma J, Kitts DD, et al. (2003). Supplementation of diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein E deficient mice. J. Nutr. 133: 744-751. PMid:12612147   Xia X, Ling W, Ma J, Xia M, et al. (2006). An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E-deficient mice. J. Nutr. 136: 2220-2225. PMid:16857844   Xu HE and Li Y (2008). Ligand-dependent and -independent regulation of PPAR gamma and orphan nuclear receptors. Sci. Signal. 1: e52. http://dx.doi.org/10.1126/scisignal.148pe52 PMid:19050303   Zhang SZ, Lipsky MM, Trump BF and Hsu IC (1990). Neutral red (NR) assay for cell viability and xenobiotic-induced cytotoxicity in primary cultures of human and rat hepatocytes. Cell Biol. Toxicol. 6: 219-234. http://dx.doi.org/10.1007/BF00249595 PMid:2113829
T. Tencomnao and Wongpiyabovorn, J., An investigation of the relationship between serotonin transporter gene promoter polymorphism and psoriasis susceptibility in a Thai population, vol. 9, pp. 2275-2282, 2010.
Amara SG and Pacholczyk T (1991). Sodium-dependent neurotransmitter reuptake systems. Curr. Opin. Neurobiol. 1: 84-90. http://dx.doi.org/10.1016/0959-4388(91)90014-X   Azmitia EC (2001). Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56: 413-424. http://dx.doi.org/10.1016/S0361-9230(01)00614-1   Azmitia EC Jr and McEwen BS (1969). Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat. Science 166: 1274-1276. http://dx.doi.org/10.1126/science.166.3910.1274 PMid:5350319   Azmitia EC, Liao B and Chen YS (1993). Increase of tryptophan hydroxylase enzyme protein by dexamethasone in adrenalectomized rat midbrain. J. Neurosci. 13: 5041-5055. PMid:8254360   Barth JH and Baker H (1986). Generalized pustular psoriasis precipitated by trazodone in the treatment of depression. Br. J. Dermatol. 115: 629-630. http://dx.doi.org/10.1111/j.1365-2133.1986.tb05776.x PMid:3790438   Geba GP, Ptak W, Anderson GM, Paliwal V, et al. (1996). Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity. J. Immunol. 157: 557-565. PMid:8752902   Gelernter J, Kranzler H and Cubells JF (1997). Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African- and European-American and Japanese populations and in alcohol-dependent subjects. Hum. Genet. 101: 243-246. http://dx.doi.org/10.1007/s004390050624 PMid:9402979   Gelernter J, Cubells JF, Kidd JR, Pakstis AJ, et al. (1999). Population studies of polymorphisms of the serotonin transporter protein gene. Am. J. Med. Genet. 88: 61-66. http://dx.doi.org/10.1002/(SICI)1096-8628(19990205)88:1<61::AID-AJMG11>3.0.CO;2-K   Griffiths CE and Richards HL (2001). Psychological influences in psoriasis. Clin. Exp. Dermatol. 26: 338-342. http://dx.doi.org/10.1046/j.1365-2230.2001.00834.x PMid:11422186   Haberstick BC, Smolen A and Hewitt JK (2006). Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol. Psychiatry 59: 836-843. http://dx.doi.org/10.1016/j.biopsych.2005.10.008 PMid:16412987   Heils A, Teufel A, Petri S, Stober G, et al. (1996). Allelic variation of human serotonin transporter gene expression. J. Neurochem. 66: 2621-2624. http://dx.doi.org/10.1046/j.1471-4159.1996.66062621.x PMid:8632190   Huang J, Li G, Xiang J, Yin D, et al. (2004). Immunohistochemical study of serotonin in lesions of psoriasis. Int. J. Dermatol. 43: 408-411. http://dx.doi.org/10.1111/j.1365-4632.2004.02195.x PMid:15186219   Hwu WL, Yang CF, Fann CS, Chen CL, et al. (2005). Mapping of psoriasis to 17q terminus. J. Med. Genet. 42: 152-158. http://dx.doi.org/10.1136/jmg.2004.018564 PMid:15689454 PMCid:1736001   Kasperska-Zajac A, Brzoza Z and Rogala B (2008). Platelet function in cutaneous diseases. Platelets 19: 317-321. http://dx.doi.org/10.1080/09537100802082249 PMid:18791936   Kingo K, Koks S, Silm H and Vasar E (2003). IL-10 promoter polymorphisms influence disease severity and course in psoriasis. Genes Immun. 4: 455-457. http://dx.doi.org/10.1038/sj.gene.6364004 PMid:12944983   Lesch KP, Wolozin BL, Murphy DL and Reiderer P (1993). Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J. Neurochem. 60: 2319-2322. http://dx.doi.org/10.1111/j.1471-4159.1993.tb03522.x PMid:7684072   Lesch KP, Balling U, Gross J, Strauss K, et al. (1994). Organization of the human serotonin transporter gene. J. Neural Transm. Gen. Sect. 95: 157-162. http://dx.doi.org/10.1007/BF01276434   Lesch KP, Bengel D, Heils A, Sabol SZ, et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527-1531. http://dx.doi.org/10.1126/science.274.5292.1527 PMid:8929413   Mortensen OV, Thomassen M, Larsen MB, Whittemore SR, et al. (1999). Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells. Brain Res. Mol. Brain Res. 68: 141-148. http://dx.doi.org/10.1016/S0169-328X(99)00083-2   Mössner R, Stiens G, Konig IR, Schmidt D, et al. (2009). Analysis of a functional serotonin transporter promoter polymorphism in psoriasis vulgaris. Arch. Dermatol. Res. 301: 443-447. http://dx.doi.org/10.1007/s00403-008-0909-3 PMid:18979110 PMCid:2701995   Nordlind K, Thorslund K, Lonne-Rahm S, Mohabbati S, et al. (2006). Expression of serotonergic receptors in psoriatic skin. Arch. Dermatol. Res. 298: 99-106. http://dx.doi.org/10.1007/s00403-006-0652-6 PMid:16794822   O'Connell PJ, Wang X, Leon-Ponte M, Griffiths C, et al. (2006). A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107: 1010-1017. http://dx.doi.org/10.1182/blood-2005-07-2903 PMid:16223770 PMCid:1895901   O'Sullivan RL, Lipper G and Lerner EA (1998). The neuro-immuno-cutaneous-endocrine network: relationship of mind and skin. Arch. Dermatol. 134: 1431-1435. http://dx.doi.org/10.1001/archderm.134.11.1431 PMid:9828880   Osborne SF, Stafford L and Orr KG (2002). Paroxetine-associated psoriasis. Am. J. Psychiatry 159: 2113. http://dx.doi.org/10.1176/appi.ajp.159.12.2113 PMid:12450972   Ospina-Duque J, Duque C, Carvajal-Carmona L, Ortiz-Barrientos D, et al. (2000). An association study of bipolar mood disorder (type I) with the 5-HTTLPR serotonin transporter polymorphism in a human population isolate from Colombia. Neurosci. Lett. 292: 199-202. http://dx.doi.org/10.1016/S0304-3940(00)01464-6   Peters BP, Weissman FG and Gill MA (2000). Pathophysiology and treatment of psoriasis. Am. J. Health Syst. Pharm. 57: 645-659. PMid:10768819   Ramamoorthy S, Bauman AL, Moore KR, Han H, et al. (1993). Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. U. S. A. 90: 2542-2546. http://dx.doi.org/10.1073/pnas.90.6.2542 PMid:7681602 PMCid:46124   Reich A and Szepietowski JC (2007). Mediators of pruritus in psoriasis. Mediators Inflamm. 2007: 64727. http://dx.doi.org/10.1155/2007/64727 PMid:18288273 PMCid:2221678   Ronpirin C, Tencomnao T and Wongpiyabovorn J (2010). Association between the -1438A/G polymorphism of the serotonin 2A receptor gene and late-onset psoriasis in a Thai population. Genet. Mol. Res. 9: 208-214. http://dx.doi.org/10.4238/vol9-1gmr718 PMid:20198576   Settin A, Hassan H, El-Baz R and Hassan T (2009). Association of cytokine gene polymorphisms with psoriasis in cases from the Nile Delta of Egypt. Acta Dermatovenerol. Alp Panonica. Adriat. 18: 105-112. PMid:19784523   Tan Pei LL and Kwek SK (2010). Onset of psoriasis during therapy with fluoxetine. Gen. Hosp. Psychiatry 32: 446.   Tencomnao T, Ketboonlue K, Wongpiyabavorn J, Ronpirin C, et al. (2007). Analysis of autoantibodies to serotonin and serotonin levels in psoriasis. Chin. Med. J. 120 (Suppl 2): P07-P02.   Thorslund K, El-Nour H and Nordlind K (2009). The serotonin transporter protein is expressed in psoriasis, where it may play a role in regulating apoptosis. Arch. Dermatol. Res. 301: 449-457. http://dx.doi.org/10.1007/s00403-009-0933-y PMid:19263059   Tomfohrde J, Silverman A, Barnes R, Fernandez-Vina MA, et al. (1994). Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 264: 1141-1145. http://dx.doi.org/10.1126/science.8178173 PMid:8178173   Tsai SJ, Hong CJ, Yu YW, Lin CH, et al. (2000). Association study of a functional serotonin transporter gene polymorphism with schizophrenia, psychopathology and clozapine response. Schizophr. Res. 44: 177-181. http://dx.doi.org/10.1016/S0920-9964(99)00170-X   You JS, Hu SY, Chen B and Zhang HG (2005). Serotonin transporter and tryptophan hydroxylase gene polymorphisms in Chinese patients with generalized anxiety disorder. Psychiatr. Genet. 15: 7-11. http://dx.doi.org/10.1097/00041444-200503000-00002 PMid:15722951
T. Tencomnao, Thongrakard, V., Phuchana, W., Sritharathikhun, T., and Suttirat, S., No relationship found between -1438A/G polymorphism of the serotonin 2A receptor gene (rs6311) and major depression susceptibility in a northeastern Thai population, vol. 9, pp. 1171-1176, 2010.
American Psychiatric Association (1994). The Diagnostic and Statistical Manual of Mental Disorders. 4th edn. American Psychiatric Association, Washington DC.   Angunsri R, Sritharathikhun T, Suttirat S and Tencomnao T (2009). Association of angiotensin-converting enzyme gene promoter single nucleotide polymorphisms and haplotype with major depression in a northeastern Thai population. J. Renin Angiotensin Aldosterone Syst. 10: 179-184. http://dx.doi.org/10.1177/1470320309344151 PMid:19713413   Bonnier B, Gorwood P, Hamon M, Sarfati Y, et al. (2002). Association of 5-HT(2A) receptor gene polymorphism with major affective disorders: the case of a subgroup of bipolar disorder with low suicide risk. Biol. Psychiatry 51: 762-765. http://dx.doi.org/10.1016/S0006-3223(01)01228-8   Choi MJ, Lee HJ, Lee HJ, Ham BJ, et al. (2004). Association between major depressive disorder and the -1438A/G polymorphism of the serotonin 2A receptor gene. Neuropsychobiology 49: 38-41. http://dx.doi.org/10.1159/000075337 PMid:14730199   Christiansen L, Tan Q, Iachina M, Bathum L, et al. (2007). Candidate gene polymorphisms in the serotonergic pathway: influence on depression symptomatology in an elderly population. Biol. Psychiatry 61: 223-230. http://dx.doi.org/10.1016/j.biopsych.2006.03.046 PMid:16806099   Collier DA, Arranz MJ, Li T, Mupita D, et al. (1997). Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet 350: 412. http://dx.doi.org/10.1016/S0140-6736(05)64135-9   Duman RS, Heninger GR and Nestler EJ (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54: 597-606. http://dx.doi.org/10.1001/archpsyc.1997.01830190015002 PMid:9236543   Frisch A, Postilnick D, Rockah R, Michaelovsky E, et al. (1999). Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol. Psychiatry 4: 389-392. http://dx.doi.org/10.1038/sj.mp.4000536 PMid:10483058   Illi A, Setala-Soikkeli E, Viikki M, Poutanen O, et al. (2009). 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 20: 1125-1128. PMid:19590397   Jansson M, Gatz M, Berg S, Johansson B, et al. (2003). Association between depressed mood in the elderly and a 5-HTR2A gene variant. Am. J. Med. Genet. B Neuropsychiatr. Genet. 120B: 79-84. http://dx.doi.org/10.1002/ajmg.b.20016 PMid:12815744   Kishi T, Kitajima T, Tsunoka T, Ikeda M, et al. (2009). Genetic association analysis of serotonin 2A receptor gene (HTR2A) with bipolar disorder and major depressive disorder in the Japanese population. Neurosci. Res. 64: 231-234. http://dx.doi.org/10.1016/j.neures.2009.03.003 PMid:19428704   Mathers CD and Loncar D (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3: e442. http://dx.doi.org/10.1371/journal.pmed.0030442 PMid:17132052 PMCid:1664601   Moussavi S, Chatterji S, Verdes E, Tandon A, et al. (2007). Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370: 851-858. http://dx.doi.org/10.1016/S0140-6736(07)61415-9   Myers RL, Airey DC, Manier DH, Shelton RC, et al. (2007). Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol. Psychiatry 61: 167-173. http://dx.doi.org/10.1016/j.biopsych.2005.12.018 PMid:16697352   Norton N and Owen MJ (2005). HTR2A: association and expression studies in neuropsychiatric genetics. Ann. Med. 37: 121-129. http://dx.doi.org/10.1080/07853890510037347 PMid:16026119   Ohara K, Nagai M, Tsukamoto T, Tani K, et al. (1998). 5-HT2A receptor gene promoter polymorphism - 1438G/A and mood disorders. Neuroreport 9: 1139-1141. http://dx.doi.org/10.1097/00001756-199804200-00033 PMid:9601682   Parsons MJ, D'Souza UM, Arranz MJ, Kerwin RW, et al. (2004). The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol. Psychiatry 56: 406-410. http://dx.doi.org/10.1016/j.biopsych.2004.06.020 PMid:15364038   Ronpirin C, Tencomnao T and Wongpiyabovorn J (2010). Association between the -1438A/G polymorphism of the serotonin 2A receptor gene and late-onset psoriasis in a Thai population. Genet. Mol. Res. 9: 208-214. http://dx.doi.org/10.4238/vol9-1gmr718 PMid:20198576   Sanders-Bush E, Fentress H and Hazelwood L (2003). Serotonin 5-HT2 receptors: molecular and genomic diversity. Mol. Interv. 3: 319-330. http://dx.doi.org/10.1124/mi.3.6.319 PMid:14993464   Saxena PR (1995). Serotonin receptors: subtypes, functional responses and therapeutic relevance. Pharmacol. Ther. 66: 339-368. http://dx.doi.org/10.1016/0163-7258(94)00005-N   Serretti A, Drago A and De Ronchi D (2007). HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr. Med. Chem. 14: 2053-2069. http://dx.doi.org/10.2174/092986707781368450 PMid:17691947   Smith AK, Dimulescu I, Falkenberg VR, Narasimhan S, et al. (2008). Genetic evaluation of the serotonergic system in chronic fatigue syndrome. Psychoneuroendocrinology 33: 188-197. http://dx.doi.org/10.1016/j.psyneuen.2007.11.001 PMid:18079067   Sullivan PF, Neale MC and Kendler KS (2000). Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157: 1552-1562. http://dx.doi.org/10.1176/appi.ajp.157.10.1552 PMid:11007705   Tencomnao T (2010). Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 34: 432. http://dx.doi.org/10.1016/j.pnpbp.2009.12.017 PMid:20036298   Tencomnao T and Boonmalert R (2009). Misgenotyping of dopamine receptor D1 gene -48A/G polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B: 447-449. http://dx.doi.org/10.1002/ajmg.b.30814 PMid:18615540   Turecki G, Briere R, Dewar K, Antonetti T, et al. (1999). Prediction of level of serotonin 2A receptor binding by serotonin receptor 2A genetic variation in postmortem brain samples from subjects who did or did not commit suicide. Am. J. Psychiatry 156: 1456-1458. PMid:10484964   Vaidya VA, Marek GJ, Aghajanian GK and Duman RS (1997). 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J. Neurosci. 17: 2785-2795. PMid:9092600   Wang S, Zhang K, Xu Y, Sun N, et al. (2009). An association study of the serotonin transporter and receptor genes with the suicidal ideation of major depression in a Chinese Han population. Psychiatry Res. 170: 204-207. http://dx.doi.org/10.1016/j.psychres.2008.12.006 PMid:19897250   Ying S, Liu XM, Sun YM and Pan SH (2009). Genetic polymorphism c.1438A>G of the 5-HT(2A) receptor is associated with abdominal obesity in Chinese Northern Han population. Mol. Biol. Rep. 36: 91-95. http://dx.doi.org/10.1007/s11033-007-9155-6 PMid:17922252   Zhang J, Shen Y, He G, Li X, et al. (2008). Lack of association between three serotonin genes and suicidal behavior in Chinese psychiatric patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 32: 467-471. http://dx.doi.org/10.1016/j.pnpbp.2007.09.019 PMid:17964050
C. Ronpirin, Achariyakul, M., Tencomnao, T., Wongpiyabovorn, J., and Chaicumpa, W., Up-regulation of Id1 in peripheral blood of psoriatic patients, vol. 9, pp. 2239-2247, 2010.
Abrams JR, Kelley SL, Hayes E, Kikuchi T, et al. (2000). Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192: 681-694. http://dx.doi.org/10.1084/jem.192.5.681 PMid:10974034 PMCid:2193278   Ackerman AB (1978). Psoriasis. In: Histologic Diagnosis of Inflammatory Skin Diseases (Ackerman AB, ed.). Lea and Febiger, Philadelphia, 251-256.   Austin LM, Ozawa M, Kikuchi T, Walters IB, et al. (1999). The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113: 752-759. http://dx.doi.org/10.1046/j.1523-1747.1999.00749.x PMid:10571730   Bata-Csorgo Z, Hammerberg C, Voorhees JJ and Cooper KD (1995a). Intralesional T-lymphocyte activation as a mediator of psoriatic epidermal hyperplasia. J. Invest. Dermatol. 105: 89S-94S. http://dx.doi.org/10.1038/jid.1995.18 PMid:7616005   Bata-Csorgo Z, Hammerberg C, Voorhees JJ and Cooper KD (1995b). Kinetics and regulation of human keratinocyte stem cell growth in short-term primary ex vivo culture. Cooperative growth factors from psoriatic lesional T lymphocytes stimulate proliferation among psoriatic uninvolved, but not normal, stem keratinocytes. J. Clin. Invest. 95: 317-327. http://dx.doi.org/10.1172/JCI117659 PMid:7529261 PMCid:295434   Bjorntorp E, Parsa R, Thornemo M, Wennberg AM, et al. (2003). The helix-loop-helix transcription factor Id1 is highly expressed in psoriatic involved skin. Acta Derm. Venereol. 83: 403-409. http://dx.doi.org/10.1080/00015550310015806 PMid:14690332   Böhm I (2006). Quantification of absolute peripheral white blood cells and their subsets in patients with lupus erythematosus: comparison with other inflammatory diseases with and without autoimmune background. Biomed. Pharmacother. 60: 92-95. http://dx.doi.org/10.1016/j.biopha.2005.06.007 PMid:16256301   Bonifati C, Carducci M, Cordiali FP, Trento E, et al. (1994). Correlated increases of tumour necrosis factor-alpha, interleukin-6 and granulocyte monocyte-colony stimulating factor levels in suction blister fluids and sera of psoriatic patients - relationships with disease severity. Clin. Exp. Dermatol. 19: 383-387. http://dx.doi.org/10.1111/j.1365-2230.1994.tb02687.x PMid:7955493   Ettehadi P, Greaves MW, Wallach D, Aderka D, et al. (1994). Elevated tumour necrosis factor-alpha (TNF-alpha) biological activity in psoriatic skin lesions. Clin. Exp. Immunol. 96: 146-151. http://dx.doi.org/10.1111/j.1365-2249.1994.tb06244.x PMid:8149659 PMCid:1534536   Friedrich M, Krammig S, Henze M, Docke WD, et al. (2000). Flow cytometric characterization of lesional T cells in psoriasis: intracellular cytokine and surface antigen expression indicates an activated, memory/effector type 1 immunophenotype. Arch. Dermatol. Res. 292: 519-521. http://dx.doi.org/10.1007/s004030000167 PMid:11142774   Gottlieb AB, Lebwohl M, Shirin S, Sherr A, et al. (2000). Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: results of a pilot, multicenter, multiple-dose, placebo-controlled study. J. Am. Acad. Dermatol. 43: 595-604. http://dx.doi.org/10.1067/mjd.2000.107945 PMid:11004613   Gottlieb AB, Masud S, Ramamurthi R, Abdulghani A, et al. (2003). Pharmacodynamic and pharmacokinetic response to anti-tumor necrosis factor-alpha monoclonal antibody (infliximab) treatment of moderate to severe psoriasis vulgaris. J. Am. Acad. Dermatol. 48: 68-75. http://dx.doi.org/10.1067/mjd.2003.10 PMid:12522373   Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, et al. (1995). Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1: 442-447. http://dx.doi.org/10.1038/nm0595-442 PMid:7585092   Henseler T (1998). Genetics of psoriasis. Arch. Dermatol. Res. 290: 463-476. http://dx.doi.org/10.1007/s004030050338 PMid:9808339   Hu LH, Chen FH, Li YR and Wang L (2004). Real-time determination of human telomerase reverse transcriptase mRNA in gastric cancer. World J. Gastroenterol. 10: 3514-3517. PMid:15526376   Ishiguro A, Spirin KS, Shiohara M, Tobler A, et al. (1996). Id2 expression increases with differentiation of human myeloid cells. Blood 87: 5225-5231. PMid:8652837   Jeffes EW III, McCullough JL, Pittelkow MR, McCormick A, et al. (1995). Methotrexate therapy of psoriasis: differential sensitivity of proliferating lymphoid and epithelial cells to the cytotoxic and growth-inhibitory effects of methotrexate. J. Invest. Dermatol. 104: 183-188. http://dx.doi.org/10.1111/1523-1747.ep12612745 PMid:7829873   Ketboonlue K (2007). Detection of Serotonin and Development of Laboratory Technique for Detecting Autoantibodies to Serotonin in the Psoriatic Patients' Blood. Master's thesis, Chulalongkorn University, Bangkok.   Krueger JG, Walters IB, Miyazawa M, Gilleaudeau P, et al. (2000). Successful in vivo blockade of CD25 (high-affinity interleukin 2 receptor) on T cells by administration of humanized anti-Tac antibody to patients with psoriasis. J. Am. Acad. Dermatol. 43: 448-458. http://dx.doi.org/10.1067/mjd.2000.106515 PMid:10954656   Kupper TS (2003). Immunologic targets in psoriasis. N. Engl. J. Med. 349: 1987-1990. http://dx.doi.org/10.1056/NEJMp038164 PMid:14627782   Lowes MA, Bowcock AM and Krueger JG (2007). Pathogenesis and therapy of psoriasis. Nature 445: 866-873. http://dx.doi.org/10.1038/nature05663 PMid:17314973   Mark EB, Jonsson M, Asp J, Wennberg AM, et al. (2006). Expression of genes involved in the regulation of p16 in psoriatic involved skin. Arch. Dermatol. Res. 297: 459-467. http://dx.doi.org/10.1007/s00403-006-0649-1 PMid:16552541   Marsland AM and Griffiths CE (2002). The macrolide immunosuppressants in dermatology: mechanisms of action. Eur. J. Dermatol. 12: 618-622. PMid:12459545   Nair RP, Duffin KC, Helms C, Ding J, et al. (2009). Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41: 199-204. http://dx.doi.org/10.1038/ng.311 PMid:19169254 PMCid:2745122   Naldi L (2010). Scoring and monitoring the severity of psoriasis. What is the preferred method? What is the ideal method? Is PASI passe? Facts and controversies. Clin. Dermatol. 28: 67-72. http://dx.doi.org/10.1016/j.clindermatol.2009.03.001 PMid:20082954   Ockenfels HM, Nussbaum G, Schultewolter T, Mertins K, et al. (1995). Tyrosine phosphorylation in psoriatic T cells is modulated by drugs that induce or improve psoriasis. Dermatology 191: 217-225. http://dx.doi.org/10.1159/000246549 PMid:8534940   Ozawa A, Sugai J, Ohkido M, Ohtsuki M, et al. (1999). Cyclosporin in psoriasis: continuous monotherapy versus intermittent long-term therapy. Eur. J. Dermatol. 9: 218-223. PMid:10210789   Prinz JC, Gross B, Vollmer S, Trommler P, et al. (1994). T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products. Eur. J. Immunol. 24: 593-598. http://dx.doi.org/10.1002/eji.1830240315 PMid:8125129   Rivera R and Murre C (2001). The regulation and function of the Id proteins in lymphocyte development. Oncogene 20: 8308-8316. http://dx.doi.org/10.1038/sj.onc.1205091 PMid:11840323   Rocha-Pereira P, Santos-Silva A, Rebelo I, Figneiredo A, et al. (2004). Erythrocyte damage in mild and severe psoriasis. Br. J. Dermatol. 150: 232-244. http://dx.doi.org/10.1111/j.1365-2133.2004.05801.x PMid:14996093   Ronpirin C and Tencomnao T (2010). Psoriasis: A review of the role of serotonergic system. Afr. J. Biotechnol. 9: 1528- 1534.   Sakurai D, Yamaguchi A, Tsuchiya N, Yamamoto K, et al. (2001). Expression of ID family genes in the synovia from patients with rheumatoid arthritis. Biochem. Biophys. Res. Commun. 284: 436-442. http://dx.doi.org/10.1006/bbrc.2001.4974 PMid:11394898   Schön MP and Boehncke WH (2005). Psoriasis. N. Engl. J. Med. 352: 1899-1912. http://dx.doi.org/10.1056/NEJMra041320 PMid:15872205   Suh HC, Leeanansaksiri W, Ji M, Klarmann KD, et al. (2008). Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo. Oncogene 27: 5612-5623. http://dx.doi.org/10.1038/onc.2008.175 PMid:18542061 PMCid:3073486   Szabo SK, Hammerberg C, Yoshida Y, Bata-Csorgo Z, et al. (1998). Identification and quantitation of interferon-gamma producing T cells in psoriatic lesions: localization to both CD4+ and CD8+ subsets. J. Invest. Dermatol. 111: 1072- 1078. http://dx.doi.org/10.1046/j.1523-1747.1998.00419.x PMid:9856819   Tam WF, Gu TL, Chen J, Lee BH, et al. (2008). Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells. Blood 112: 1981-1992. http://dx.doi.org/10.1182/blood-2007-07-103010 PMid:18559972 PMCid:2518899   Vallat VP, Gilleaudeau P, Battat L, Wolfe J, et al. (1994). PUVA bath therapy strongly suppresses immunological and epidermal activation in psoriasis: a possible cellular basis for remittive therapy. J. Exp. Med. 180: 283-296. http://dx.doi.org/10.1084/jem.180.1.283 PMid:7516410   Vollmer S, Menssen A, Trommler P, Schendel D, et al. (1994). T lymphocytes derived from skin lesions of patients with psoriasis vulgaris express a novel cytokine pattern that is distinct from that of T helper type 1 and T helper type 2 cells. Eur. J. Immunol. 24: 2377-2382. http://dx.doi.org/10.1002/eji.1830241018 PMid:7925564   Wong YC, Wang X and Ling MT (2004). Id-1 expression and cell survival. Apoptosis 9: 279-289. http://dx.doi.org/10.1023/B:APPT.0000025804.25396.79 PMid:15258459   Yang Y, Liou HC and Sun XH (2006). Id1 potentiates NF-kappaB activation upon T cell receptor signaling. J. Biol. Chem. 281: 34989-34996. http://dx.doi.org/10.1074/jbc.M608078200 PMid:17012234