Publications

Found 14 results
Filters: Author is Y.X. Wang  [Clear All Filters]
2015
Z. L. Wang, Chai, R. F., Yang, W. S., Liu, Y., Qin, H., Wu, H., Zhu, X. F., Wang, Y. X., and Dangmurenjiafu, G., ApoE and S-100 expression and its significance in the brain tissue of rats with focal contusion, vol. 14, pp. 19275-19281, 2015.
L. J. Zhang, Dong, W. X., Guo, S. M., Wang, Y. X., Wang, A. D., and Lu, X. J., Cloning and characterization of the SERK1 gene in triploid Pingyi Tiancha [Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and a tetraploid hybrid strain, vol. 14, pp. 14576-14586, 2015.
T. Jin, Wang, Y. X., Fan, K., Tao, D. B., Dong, X., and Shen, J. S., Differentiation-inducing effects of betamethasone on human glioma cell line U251, vol. 14, pp. 7841-7849, 2015.
X. F. Ma, Xu, F. L., Gao, L. F., Wang, Y. X., and Pan, Z. B., Effect of age on the immune system and pathology of mice with chronic graft-versus-host disease lupus nephritis, vol. 14, pp. 10999-11005, 2015.
Z. L. Wang, Xu, D. S., Wang, Y. X., Qin, H., and Geng, D., Effect of single nucleotide polymorphisms in the ATP-binding cassette B1 gene on the clini­cal outcome of traumatic brain injury, vol. 14, pp. 10948-10953, 2015.
W. H. Yu, Wang, Y. X., Guo, J. Q., Wang, Y. L., Zheng, J. S., and Zhu, K. X., Genetic variability of ERCC1 and ERCC2 influences treatment outcomes in gastric cancer, vol. 14, pp. 17529-17535, 2015.
W. Wan, Xu, X., Zhao, D. B., Pang, Y. F., and Wang, Y. X., Polymorphisms of uric transporter proteins in the pathogenesis of gout in a Chinese Han population, vol. 14, pp. 2546-2550, 2015.
G. L. Gao, Na, W., Wang, Y. X., Zhang, H. F., Li, H., and Wang, Q. G., Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes, vol. 14, pp. 4847-4857, 2015.
2012
S. Z. Wang, Hu, X. X., Wang, Z. P., Li, X. C., Wang, Q. G., Wang, Y. X., Tang, Z. Q., and Li, H., Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7, vol. 11, pp. 956-965, 2012.
Abasht B, Dekkers JC and Lamont SJ (2006). Review of quantitative trait loci identified in the chicken. Poult. Sci. 85: 2079-2096. PMid:17135661 Ambo M, Moura AS, Ledur MC, Pinto LF, et al. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet. 40: 200-208. http://dx.doi.org/10.1111/j.1365-2052.2008.01824.x PMid:19170675 Andersson L and Georges M (2004). Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5: 202-212. http://dx.doi.org/10.1038/nrg1294 PMid:14970822 Ankra-Badu GA, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, et al. (2010). Mapping QTL for growth and shank traits in chickens divergently selected for high or low body weight. Anim. Genet. 41: 400-405. PMid:20096032 Atzmon G, Blum S, Feldman M, Lavi U, et al. (2007). Detection of agriculturally important QTLs in chickens and analysis of the factors affecting genotyping strategy. Cytogenet. Genome Res. 117: 327-337. http://dx.doi.org/10.1159/000103195 PMid:17675875 Atzmon G, Blum S, Feldman M, Cahaner A, et al. (2008). QTLs detected in a multigenerational resource chicken population. J. Hered. 99: 528-538. http://dx.doi.org/10.1093/jhered/esn030 PMid:18492652 Brockmann GA, Haley CS, Renne U, Knott SA, et al. (1998). Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150: 369-381. PMid:9725853    PMCid:1460298 Campos RL, Nones K, Ledur MC, Moura AS, et al. (2009). Quantitative trait loci associated with fatness in a broiler-layer cross. Anim. Genet. 40: 729-736. http://dx.doi.org/10.1111/j.1365-2052.2009.01910.x PMid:19466938 Carlborg O, Kerje S, Schutz K, Jacobsson L, et al. (2003). A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13: 413-421. http://dx.doi.org/10.1101/gr.528003 PMid:12618372    PMCid:430275 Choct M, Naylor A, Hutton O and Nolan J (2000). Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No. 98/123. Available at [https://rirdc.infoservices.com.au/downloads/98-123]. Accessed September 20, 2010. Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971. PMid:7851788    PMCid:1206241 Deeb N and Lamont SJ (2002). Genetic architecture of growth and body composition in unique chicken populations. J. Hered. 93: 107-118. http://dx.doi.org/10.1093/jhered/93.2.107 PMid:12140270 Green P, Falls K and Crooks S (1990). Program CRI-MAP, Version 2.4. Washington University School of Medicine, St. Louis. Hu ZL, Fritz ER and Reecy JM (2007). AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 35: D604-D609. http://dx.doi.org/10.1093/nar/gkl946 PMid:17135205    PMCid:1781224 Ikeobi CO, Woolliams JA, Morrice DR, Law A, et al. (2002). Quantitative trait loci affecting fatness in the chicken. Anim. Genet. 33: 428-435. http://dx.doi.org/10.1046/j.1365-2052.2002.00911.x PMid:12464017 Jacobsson L, Park HB, Wahlberg P, Fredriksson R, et al. (2005). Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86: 115-125. http://dx.doi.org/10.1017/S0016672305007767 PMid:16356285 Kerje S, Carlborg O, Jacobsson L, Schutz K, et al. (2003). The two-fold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34: 264-274. http://dx.doi.org/10.1046/j.1365-2052.2003.01000.x PMid:12873214 Knott SA, Marklund L, Haley CS, Andersson K, et al. (1998). Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069-1080. PMid:9611214    PMCid:1460207 Lagarrigue S, Pitel F, Carre W, Abasht B, et al. (2006). Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet. Sel. Evol. 38: 85-97. http://dx.doi.org/10.1186/1297-9686-38-1-85 PMCid:2689300 Le Bihan-Duval E, Millet N and Remignon H (1999). Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poult. Sci. 78: 822-826. PMid:10438124 Le Mignon G, Pitel F, Gilbert H, Le Bihan-Duval E, et al. (2009). A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim. Genet. 40: 157-164. http://dx.doi.org/10.1111/j.1365-2052.2008.01817.x PMid:19243366 Liu X, Li H, Wang S, Hu X, et al. (2007). Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86: 1084-1089. PMid:17495077 Marklund L, Nystrom PE, Stern S, Andersson-Eklund L, et al. (1999). Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82: 134-141. http://dx.doi.org/10.1038/sj.hdy.6884630 PMid:10098263 McElroy JP, Kim JJ, Harry DE, Brown SR, et al. (2006). Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85: 593-605. PMid:16615342 Nadaf J, Pitel F, Gilbert H, Duclos MJ, et al. (2009). QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol. Genomics 38: 241-249. http://dx.doi.org/10.1152/physiolgenomics.90384.2008 PMid:19531576 National Research Council (1994). Nutrient Requirements of Poultry. Natl. Acad. Press, Washington. Nones K, Ledur MC, Ruy DC, Baron EE, et al. (2006). Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100. http://dx.doi.org/10.1111/j.1365-2052.2005.01387.x PMid:16573522 Park HB, Jacobsson L, Wahlberg P, Siegel PB, et al. (2006). QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol. Genomics 25: 216-223. http://dx.doi.org/10.1152/physiolgenomics.00113.2005 PMid:16390876 SAS Institute (2004). JMP User’s Guide. SAS Institute Inc., Cary. Schmid M, Nanda I, Guttenbach M, Steinlein C, et al. (2000). First report on chicken genes and chromosomes 2000. Cytogenet. Cell Genet. 90: 169-218. http://dx.doi.org/10.1159/000056772 Seaton G, Hernandez J, Grunchec JA, White I, et al. (2006). GridQTL: A Grid Portal for QTL Mapping of Compute Intensive Datasets. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 13-18. Sewalem A, Morrice DM, Law A, Windsor D, et al. (2002). Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult. Sci. 81: 1775-1781. PMid:12512565 Siwek M, Cornelissen SJ, Buitenhuis AJ, Nieuwland MG, et al. (2004). Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poult. Sci. 83: 853-859. PMid:15206609 Spelman RJ and Bovenhuis H (1998). Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29: 77-84. http://dx.doi.org/10.1046/j.1365-2052.1998.00238.x PMid:9699266 Tercic D, Holcman A, Dovc P, Morrice DR, et al. (2009). Identification of chromosomal regions associated with growth and carcass traits in an F(3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40: 743-748. http://dx.doi.org/10.1111/j.1365-2052.2009.01917.x PMid:19466935 Wahlberg P, Carlborg O, Foglio M, Tordoir X, et al. (2009). Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10: 248. http://dx.doi.org/10.1186/1471-2164-10-248 PMid:19473501    PMCid:2695486 Wang Q, Li H, Li N, Leng L, et al. (2006). Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult. Sci. 85: 429-434. PMid:16553271 Zhang S, Li H and Shi H (2006). Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity. Poult. Sci. 85: 178-184. PMid:16523611 Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006a). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poult. Sci 85: 1700-1711. PMid:17012159 Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006b). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85: 1712-1721. PMid:17012160
2011
R. F. Zhou, Liu, Y., Wang, Y. X., Mo, W., and Yu, M., Coagulation factor III (tissue factor) is required for vascularization in zebrafish embryos, vol. 10, pp. 4147-4157, 2011.
Bazan JF (1990). Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. U. S. A. 87: 6934-6938. http://dx.doi.org/10.1073/pnas.87.18.6934 PMid:2169613 PMCid:54656   Berghmans S, Murphey RD, Wienholds E, Neuberg D, et al. (2005). tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl. Acad. Sci. U. S. A. 102: 407-412. http://dx.doi.org/10.1073/pnas.0406252102 PMid:15630097 PMCid:544293   Carmeliet P, Mackman N, Moons L, Luther T, et al. (1996). Role of tissue factor in embryonic blood vessel development. Nature 383: 73-75. http://dx.doi.org/10.1038/383073a0 PMid:8779717   Carson SD and Brozna JP (1993). The role of tissue factor in the production of thrombin. Blood Coagul. Fibrinolysis 4: 281-292. http://dx.doi.org/10.1097/00001721-199304000-00010 PMid:8499566   Chen D and Dorling A (2009). Critical roles for thrombin in acute and chronic inflammation. J. Thromb. Haemost. 7 (Suppl 1): 122-126. http://dx.doi.org/10.1111/j.1538-7836.2009.03413.x PMid:19630783   Edgington TS, Mackman N, Brand K and Ruf W (1991). The structural biology of expression and function of tissue factor. Thromb. Haemost. 66: 67-79. PMid:1833852   He Y, Chang G, Zhan S, Song X, et al. (2008). Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells. Biochem. Biophys. Res. Commun. 370: 489-494. http://dx.doi.org/10.1016/j.bbrc.2008.03.133 PMid:18395519   Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, et al. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253-310. http://dx.doi.org/10.1002/aja.1002030302 PMid:8589427   Mackman N, Morrissey JH, Fowler B and Edgington TS (1989). Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade. Biochemistry 28: 1755-1762. http://dx.doi.org/10.1021/bi00430a050 PMid:2719931   Mackman N, Sawdey MS, Keeton MR and Loskutoff DJ (1993). Murine tissue factor gene expression in vivo. Tissue and cell specificity and regulation by lipopolysaccharide. Am. J. Pathol. 143: 76-84. PMid:8317556 PMCid:1886940   Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835-846. http://dx.doi.org/10.1016/0092-8674(93)90573-9   Morrissey JH, Fakhrai H and Edgington TS (1987). Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50: 129-135. http://dx.doi.org/10.1016/0092-8674(87)90669-6   Nemerson Y (1988). Tissue factor and hemostasis. Blood 71: 1-8. PMid:3275472   Osterud B, Bajaj MS and Bajaj SP (1995). Sites of tissue factor pathway inhibitor (TFPI) and tissue factor expression under physiologic and pathologic conditions. On behalf of the Subcommittee on Tissue Factor Pathway Inhibitor (TFPI) of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost. 73: 873-875. PMid:7482419   Pawlinski R and Mackman N (2004). Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit. Care Med. 32: S293-S297. http://dx.doi.org/10.1097/01.CCM.0000128445.95144.B8 PMid:15118533   Sehnert AJ, Huq A, Weinstein BM, Walker C, et al. (2002). Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 31: 106-110. http://dx.doi.org/10.1038/ng875 PMid:11967535   Soifer SJ, Peters KG, O'Keefe J and Coughlin SR (1994). Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am. J. Pathol. 144: 60-69. PMid:8291612 PMCid:1887128   Spicer EK, Horton R, Bloem L, Bach R, et al. (1987). Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA. Proc. Natl. Acad. Sci. U. S. A. 84: 5148-5152. http://dx.doi.org/10.1073/pnas.84.15.5148 PMid:3037536 PMCid:298811   Stainier DY (2001). Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2: 39-48. http://dx.doi.org/10.1038/35047564 PMid:11253067   Stainier DY, Weinstein BM, Detrich HW III, Zon LI, et al. (1995). Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121: 3141-3150. PMid:7588049   Stein C, Caccamo M, Laird G and Leptin M (2007). Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 8: R251. http://dx.doi.org/10.1186/gb-2007-8-11-r251 PMid:18039395 PMCid:2258186   Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, et al. (1996). Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88: 1583-1587. PMid:8781413   Tuddenham EG, Pemberton S and Cooper DN (1995). Inherited factor VII deficiency: genetics and molecular pathology. Thromb. Haemost. 74: 313-321. PMid:8578478   Westerfield M (2000). The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Oregon.   Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, et al. (1993). flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118: 489-498. PMid:8223275