Publications

Found 104 results
Filters: Author is Y. Liu  [Clear All Filters]
2015
Y. Zhao, Li, Y., Liu, Y., and Yang, Y. F., DNA barcoding for efficient identification of Ixiolirion species (Ixioliriaceae), vol. 14, pp. 1903-1910, 2015.
H. Z. Jin, Shi, W. S., Tian, Y., Liu, Y., Jin, Y., and Manabe, N., Expression and localization of cFLIP anti-apoptotic protein in the porcine corpus luteum and corpora albicans during the estrous cycle and pregnancy, vol. 14, pp. 8262-8272, 2015.
Y. F. Ma, Yang, B., Li, J., Zhang, T., Guo, J. T., Chen, L., Li, M., Chu, J., Liang, C. Y., and Liu, Y., Expression of Ras-related protein 25 predicts chemotherapy resistance and prognosis in advanced non-small cell lung cancer, vol. 14, pp. 13998-14008, 2015.
Y. Zhao, Li, Y., Liu, Y., and Yang, Y. F., Genetic diversity of wild Prunus cerasifera Ehrhart (wild cherry plum) in China revealed by simple-sequence repeat markers, vol. 14, pp. 8407-8413, 2015.
Y. J. Shu, Song, L. L., Zhang, J., Liu, Y., and Guo, C. H., Genome-wide identification and characterization of the Dof gene family in Medicago truncatula, vol. 14, pp. 10645-10657, 2015.
H. Q. Han, Liu, Y., Jiang, M. M., Ge, H. Y., and Chen, H. Y., Identification and expression analysis of YABBY family genes associated with fruit shape in tomato (Solanum lycopersicum L.), vol. 14, pp. 7079-7091, 2015.
Z. C. Wu, Liu, Y., Dong, W. H., Sun, S. Y., Zhu, G. Q., Wu, S. L., and Bao, W. B., Identification of BPI protein produced in different expression system and its association with Escherichia coli F18 susceptibility, vol. 14, pp. 1111-1123, 2015.
Z. Li, Liu, Y., Cao, D., Jiang, M., and Luo, F., IL-17A and IL-17F polymorphisms and gastric cancer risk: a meta-analysis, vol. 14, pp. 7008-7017, 2015.
Y. Liu, Yu, M. C., Zhang, A. Q., Wang, Y. B., Jiang, K., and Dong, J. H., Interleukin-10 gene promoter polymorphism and risk of liver cirrhosis, vol. 14, pp. 1229-1234, 2015.
L. Lin, Li, P., Chen, Z. Z., Xiao, Y. Y., Xu, S. N., Liu, Y., and Li, C. H., Isolation and characterization of microsatellite loci in the purpleback flying squid (Sthenoteuthis oualaniensi), vol. 14. pp. 7630-7633, 2015.
L. Lin, Li, C. H., Xu, S. N., Liu, Y., and Xiao, Y. Y., Isolation and characterization of novel polymorphic microsatellite markers for Lutjanus erythropterus, vol. 14, pp. 10944-10947, 2015.
Y. Liu, Song, X. L., Zhang, G. L., Peng, A. M., Fu, P. F., Li, P., Tan, M., Li, X., Li, M., and Wang, C. H., Lack of association between IL-6 -174G>C polymorphism and lung cancer: a meta-analysis, vol. 14, pp. 163-169, 2015.
Y. - F. Liu, Ding, M., Liu, D. - W., Liu, Y., Mao, Y. - G., and Peng, Y., MicroRNA profiling in cutaneous wounds of diabetic rats, vol. 14, pp. 9614-9625, 2015.
Y. Zhou, Liu, Y., Yang, S. X., and Wang, Z., N-ethylmaleimide-sensitive factor siRNA improves cardiac function following myocardial infarction in rats, vol. 14, pp. 9478-9485, 2015.
S. - T. Yan, Li, C. - X., Li, C. - L., Li, J., Shao, Y. - H., Liu, Y., Zhong, W. - W., Fang, F. - S., Sun, B. - R., and Tian, H., Promotive effect of comprehensive management on achieving blood glucose control in senile type 2 diabetics, vol. 14, pp. 3062-3070, 2015.
Y. Wang, Liu, Y., Chen, J., Tang, M. J., Zhang, S. L., Wei, L. N., Li, C. H., and Wei, D. B., Restriction-ligation-free (RLF) cloning: a high-throughput cloning method by in vivo homologous recombination of PCR products, vol. 14, pp. 12306-12315, 2015.
Y. J. Ye, Liu, Y., Cai, M., He, D., Shen, J. S., Ju, Y. Q., Bian, X. M., Pan, H. T., and Zhang, Q. X., Screening of molecular markers linked to dwarf trait in crape myrtle by bulked segregant analysis, vol. 14, pp. 4369-4380, 2015.
Y. Liu, Xie, D. Y., Lin, X. M., and Chi, C., Unicentric Castleman disease located in the anterior mediastinum misdiagnosed as invasive thymoma: a case report, vol. 14. pp. 6674-6678, 2015.
2014
H. Q. Zhai, Hhang, J. R., Gao, M. C., Liu, Y., Zhang, S. F., Wang, X. H., Meng, F. Y., and Wang, Y. P., Comparative study between Ephedra sinica Stapf and Fructus Schisandrae Chinensis on ET-1 and 6-keto-prostaglandin F1α in rats with idiopathic pulmonary fibrosis, vol. 13, pp. 3761-3771, 2014.
Y. Wang, Mcdonald, J. P., Liu, Y., Pan, K., Zhang, X., and Hu, R., Dynamic alterations of the tongue in obstructive sleep apnea-hypopnea syndrome during sleep: analysis using ultrafast MRI, vol. 13, pp. 4552-4563, 2014.
J. Wang, Liu, Y., Dong, W. H., Huo, Y. J., Huang, X. G., Wu, S. L., and Bao, W. B., Dynamic changes in TAP1 expression levels in newborn to weaning piglets, and its association with Escherichia coli F18 resistance, vol. 13, pp. 3686-3692, 2014.
Y. Liu, Wang, H., Cheng, G., Jiang, B., and Zan, L., Expression analysis of Gli1 and Gli2 in different tissues and muscle-derived cells of Qinchuan cattle, vol. 13, pp. 8767-8775, 2014.
Z. Y. Zhu, Liu, Y., Wang, H. B., Xiao, J. Z., Qiu, Y. F., Yan, L., Chen, D., Liu, A. G., and Yang, X., Expression and diagnostic value of proteins in Mycobacterium tuberculosis, vol. 13, pp. 7780-7790, 2014.
F. - R. Wu, Zhang, Y., Ding, B., Lei, X. - H., Huang, J. - C., Wang, C. - H., Liu, Y., Wang, R., and Li, W. - Y., H3K27me3 may be associated with Oct4 and Sox2 in mouse preimplantation embryos, vol. 13, pp. 10121-10129, 2014.
W. Liang, Zhang, H. L., Liu, Y., Lu, B. C., Liu, X., Li, Q., and Cao, Y., Investigation of the association of two candidate genes (H-FABP and PSMC1) with growth and carcass traits in Qinchuan beef cattle from China, vol. 13, pp. 1876-1884, 2014.
X. Lu, Gong, Y. F., Liu, J. F., Liu, Y., and Zhang, Q., Mapping quantitative trait loci for the lysozyme level and immunoglobulin G blocking percentage of classical swine fever virus, vol. 13, pp. 283-290, 2014.
L. Liu, Lin, L., Li, C. H., Xu, S. N., Liu, Y., and Zhou, Y. B., Polymorphic microsatellite loci for the crimson snapper (Lutjanus erythropterus), vol. 13, pp. 5250-5253, 2014.
X. L. Kong, Chen, Z. Z., Lin, L., Li, C. H., Xu, S. N., and Liu, Y., Polymorphic microsatellite loci isolated from the yellowbelly threadfin bream, Nemipterus bathybius, vol. 13, pp. 5254-5257, 2014.
J. J. Cui, Tian, Y., Liu, Y., Huang, H. L., and Jin, Y., Proacrosin activation mechanisms in capacitated and frozen-thawed boar spermatozoa, vol. 13, pp. 9915-9920, 2014.
M. X. Zhang, Gao, H. M., Han, S. Y., Liu, Y., Tian, Y. L., Sun, S. H., Xiao, D. J., Li, C. T., and Wang, Y. S., Risk analysis of duo parentage testing with limited STR loci, vol. 13, pp. 1179-1186, 2014.
B. X. Shen, Peng, D. H., Li, Y. G., Liu, Y., and Gao, Y., Value of dual-source computed tomography in evaluating left ventricular function in patients with coronary heart disease, vol. 13, pp. 2417-2425, 2014.
J. H. Zhang, Wen, Q. L., Yang, C., Li, A. L., Liu, Y., and Li, X. S., XRCC3 T241M polymorphism and lung cancer risk in the Han Chinese population: a meta-analysis, vol. 13, pp. 9505-9513, 2014.
2013
P. L. Sun, Yang, L. X., Cui, J. - J., Tian, Y., Liu, Y., and Jin, Y., Activation of proacrosin accompanies upregulation of sp32 protein tyrosine phosphorylation in pig sperm, vol. 12, pp. 6579-6587, 2013.
Z. M. Jiang, Wu, X. J., Liu, Y., Du, X. H., Shen, S. J., Xu, L. Y., and Sun, W. X., Changes of gene expression profiles across different phases of vascular calcification in rats, vol. 12, pp. 5945-5957, 2013.
J. Zhang, Liu, N., Niu, R., Liu, Y., Zhai, H., Xu, W., and Wang, Y., Construction of a cDNA library of the Chinese wild Vitis amurensis under cold stress and analysis of potential hardiness-related expressed sequence tags, vol. 12, pp. 1182-1193, 2013.
Cheng H, Cai HB and Huang HS (2008). Construction of full-length cDNA library in rubber tree under cold stress. Chin. J. Trop. Crops 29: 410-414.   da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, et al. (2005). Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol. 139: 574-597. http://dx.doi.org/10.1104/pp.105.065748 PMid:16219919 PMCid:1255978   Dalbó MA, Ye GN, Weeden NF, Wilcox WF, et al. (2001). Marker-assisted selection for powdery mildew resistance in grapes. J. Am. Soc. Hortic. Sci. 126: 83-89.   Denekamp M and Smeekens SC (2003). Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 132: 1415-1423. http://dx.doi.org/10.1104/pp.102.019273 PMid:12857823 PMCid:167081   Dhanaraj AL, Slovin JP and Rowland LJ (2004). Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci. 166: 863-872. http://dx.doi.org/10.1016/j.plantsci.2003.11.013   Fowler S and Thomashow MF (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690. http://dx.doi.org/10.1105/tpc.003483 PMid:12172015 PMCid:151458   He PC and Luo GG (1994). Grape Science. China Agriculture Press, Beijing.   He PC, Wang YJ, Wang GY, Ren ZB, et al. (1991). The studies on the disease resistance of Chinese wild Vitis species. Sci. Agric. Sin. 24: 50-56.   Jia DS, Mao XG, Wu RL, Zhang XK, et al. (2008). Cloning and expression of transcription factor TaMyb2s in wheat. Acta Agronom. Sin. 34: 1323-1329. http://dx.doi.org/10.3724/SP.J.1006.2008.01323   Kariola T, Brader G, Helenius E, Li J, et al. (2006). EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol. 142: 1559-1573. http://dx.doi.org/10.1104/pp.106.086223 PMid:17056758 PMCid:1676049   Kiyosue T, Abe H, Yamaguchi-Shinozaki K and Shinozaki K (1998). ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim. Biophys. Acta 1370: 187-191. http://dx.doi.org/10.1016/S0005-2736(98)00007-8   Maestrini P, Cavallini A, Rizzo M, Giordani T, et al. (2009). Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J. Plant Physiol. 166: 1544-1556. http://dx.doi.org/10.1016/j.jplph.2009.03.014 PMid:19464753   Nagaoka S and Takano T (2003). Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp. Bot. 54: 2231-2237. http://dx.doi.org/10.1093/jxb/erg241 PMid:12909688   Nasser W, de Tapia M and Burkard G (1990). Maize pathogenesis-related proteins: characterization and cellular distribution of 1,3-β-glucanases and chitinases induced by brome mosaic virus infection or mercuric chloride treatment. Physiol. Mol. Plant Pathol. 36: 1-14. http://dx.doi.org/10.1016/0885-5765(90)90087-E   Nogueira FTS, De Rosa V Jr, Menossi M, Ulian EC, et al. (2003). RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol. 132: 1811-1824. http://dx.doi.org/10.1104/pp.102.017483 PMid:12913139 PMCid:181268   Shen DX (1985). Fruit Trees Breeding. China Agriculture Press, Beijing.   Shi JL, Wang YJ, Zhu ZG and Zhang CH (2010). The EST analysis of a suppressive subtraction cDNA library of Chinese wild Vitis pseudoreticulata inoculated with Uncinula necator. Agric. Sci. China 9: 233-241. http://dx.doi.org/10.1016/S1671-2927(09)60088-2   Su CF, Wang YC, Hsieh TH, Lu CA, et al. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153: 145-158. http://dx.doi.org/10.1104/pp.110.153015 PMid:20130099 PMCid:2862423   Todgham AE, Hoaglund EA and Hofmann GE (2007). Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo. J. Comp. Physiol. B 177: 857-866. http://dx.doi.org/10.1007/s00360-007-0183-2 PMid:17710411   Wang GL and Guo ZF (2003). The progress of researches on molecular mechanism of chilling tolerance in plants. Chin. Bull. Bot. 20: 671-679.   Xu Y, Zhu Z, Xiao Y and Wang Y (2009). Construction of a cDNA library of Vitis pseudoreticulata native to China inoculated with Uncinula necator and the analysis of potential defence-related expressed sequence tags (ESTs). S. Afr. J. Enol. Vitic. 30: 65-71.   Ying SY (2004). Complementary DNA libraries: an overview. Mol. Biotechnol. 27: 245-252. http://dx.doi.org/10.1385/MB:27:3:245   Zhang JJ, Wang YJ and Wang XP (2003). An improved method for rapidly extracting total RNA from Vitis. J. Fruit Sci. 20: 178-181.   Zhang JW, Wang YJ, Zhu ZG, Wang PY, et al. (2009). Construction and preliminary analysis of the SSH library of Chinese wild Vitis pseudoretioulata resistance to downy mildew. Sci. Agric. Sin. 42: 960-966.   Zhu Q, Maher EA, Masoud S, Dixon RA, et al. (1994). Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nat. Biotechnol. 12: 807-812. http://dx.doi.org/10.1038/nbt0894-807   Zhu J, Dong CH and Zhu JK (2007). Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr. Opin. Plant Biol. 10: 290-295. http://dx.doi.org/10.1016/j.pbi.2007.04.010 PMid:17468037
Y. M. Xi, Dong, Y. F., Wang, Z. J., Liu, Y., Diao, Z. Z., and Hu, Y. G., Co-transfection of adeno-associated virus-mediated human vascular endothelial growth factor165 and transforming growth factor-β1 into annulus fibrosus cells of rabbit degenerative intervertebral discs, vol. 12, pp. 4895-4908, 2013.
H. Song, Liu, Y., Pan, J., and Zhao, S. T., Expression profile analysis reveals putative prostate cancer-related microRNAs, vol. 12, pp. 4934-4943, 2013.
L. Zhou, Wang, L. M., Song, H. M., Shen, Y. Q., Xu, W. J., Xu, J. H., Liu, Y., Yan, W. W., and Jiang, J. F., Expression profiling analysis of hypoxic pulmonary disease, vol. 12, pp. 4162-4170, 2013.
G. L. Hong, Chen, X. Z., Liu, Y., Liu, Y. H., Fu, X., Lin, S. B., and Zhu, Q., Genetic variations in MOV10 and CACNB2 are associated with hypertension in a Chinese Han population, vol. 12, pp. 6220-6227, 2013.
H. L. Wang, Li, Z. X., Chen, L., Yang, J., Wang, L. J., He, H., Niu, F. B., Liu, Y., Guo, J. Z., and Liu, X. L., Polymorphism in PGLYRP-2 gene by PCR-RFLP and its association with somatic cell score and percentage of fat in Chinese Holstein, vol. 12, pp. 6743-6751, 2013.
H. Y. Ge, Liu, Y., Zhang, J., Han, H. Q., Li, H. Z., Shao, W. T., and Chen, H. Y., Simple sequence repeat-based association analysis of fruit traits in eggplant (Solanum melongena), vol. 12, pp. 5651-5663, 2013.
2012
Y. Liu, Hui, R. - K., Deng, R. - N., Wang, J. - J., Wang, M., and Li, Z. - Y., Abnormal male meiosis explains pollen sterility in the polyploid medicinal plant Pinellia ternata (Araceae), vol. 11, pp. 112-120, 2012.
Bellucci M, Roscini C and Mariani A (2003). Cytomixis in pollen mother cells of Medicago sativa L. J. Hered. 94: 512- 516. http://dx.doi.org/10.1093/jhered/esg096 PMid:14691318 Boldrini KR, Pagliarini MS and Do Valle CB (2006). Cell fusion and cytomixis during microsporogenesis in Brachiaria humidicola (Poaceae). South Afr. J. Bot. 72: 478-481. http://dx.doi.org/10.1016/j.sajb.2005.11.004 Chen CB, Ma XJ, Chen L, Xue M, et al. (2006). Studies on cytogeography of Pinellia ternata poliploid complex. Zhongguo Zhong. Yao Za Zhi. 31: 1405-1408. Datta AK, Mukherjee M and Iqbal M (2005). Persistent cytomixis in Occimum basilicum L. (Lamiaceae) and Withania somnifera (L.) Dun (Solanaceae). Cytologia 70: 309-313. http://dx.doi.org/10.1508/cytologia.70.309 de Souza A and Pagliarini M (1997). Cytomixis in Brassica napus var. oleifera and Brassica campestris var. oleifera (Brassicaceae). Cytologia 62: 25-29. http://dx.doi.org/10.1508/cytologia.62.25 Falistocco E, Tosti N and Falcinelli M (1995). Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J. Hered. 86: 448-453. Ghaffari SM (2006). Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr. J. Biotechnol. 5: 1450-1453. Ghanima AM and Talaat AA (2003). Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae). Bot. J. Linn. Soc. 143: 169-175. http://dx.doi.org/10.1046/j.1095-8339.2003.00218.x Gu DX and Xu PS (1991). A comparison of the variation patterns of populations between two species of Pinellia from Nanjing. Acta Phytotaxon. Sin. 29: 423-430. Haroun SA (1995). Cytomixis in pollen mother cells of Polygonum tomentosum Schrank. Cytologia 60: 257-260. http://dx.doi.org/10.1508/cytologia.60.257 Heslop-Harrison J (1966). Cytoplasmic connexions between angiosperm meiocytes. Ann. Bot. 30: 221-222. Huttoleston DG (1942). Lysichiton version versus Lyschichitum. Bull. Torrey Bot. Club 108: 479-481. Ito T (1942). Chromosome und Sexualität der Araceae. I. Somatische hromosomenzahlen einiger Arten. Cytologia 12: 313-325. Lattoo SK, Khan S, Bamotra S and Dhar AK (2006). Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq. - an additional strategy and possible implications. J. Biosci. 31: 629-637. http://dx.doi.org/10.1007/BF02708415 PMid:17301501 Li H (1979). The ‘tian-nan-xing’, ‘hu-zhang’ and ‘ban-xia’ in Chinese herbalogies. Acta Bot. Yunnanica 2: 13-26. Li L (1995). A Systematic Study of the Genus Pinellia tenore (Araceae) in China. Proc. VI International, Aroid Conference, Editorial Department Acta Botanic Yunnanica, Kunming, 44. Li MW, Gu DX and Liu YL (1997). Several variation patterns and their evolution of Pinellia (Araceae). J. Wuhan Bot. Res. 15: 317-322. Li XF, Song ZQ, Feng DS and Wang HG (2009). Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat. Cereal Res. Commun. 37: 353-361. http://dx.doi.org/10.1556/CRC.37.2009.3.4 Li Z, Liu HL and Luo P (1995). Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 91: 131-136. http://dx.doi.org/10.1007/BF00220869 Luo HS and Zhou DH (1979). Brief introduction of Chinese medicine commonly used as anti-tumor. J. New. Chin. Medicine 4: 53-54. Maity S and Datta AK (2009). Meiosis in nine species of Jute (Corchorus). Indian J. Sci. Tech. 2: 27-29. Malallah GA and Attia TA (2003). Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae). Bot. J. Linn. Soc. 143: 169-175. http://dx.doi.org/10.1046/j.1095-8339.2003.00218.x Malvesin-Fabre G (1972). Contribution à la Caryologie des Aracées. E. Drouillard, Bordeaux. Marchant CJ (1972). Chromosome variation in Araceae: IV* Areae. Kew Bull. 26: 395-404. http://dx.doi.org/10.2307/4120302 Mayo SJ, Bogner J and Boyce PC (1997). The genera of Araceae. Kew: Royal Botanic Gardens 280-283. Nirmala A and Rao PN (1996). Genesis of chromosome numerical mosaicism in higher plants. Nucleus 39: 151-175. Pierozzi NI and Benatti R (1998). Cytological analysis in the microsporogenesis of ramie, Boehmeria nivea Gaud. (Urticaceae) and the effect of colchicine on the chiasma frequency. Cytologia 63: 213-221. http://dx.doi.org/10.1508/cytologia.63.213 Sarvella P (1958). Cytomixis and loss of chromosomes in meiotic and somatic cells of Gossypium. Cytologia 33: 14-24. http://dx.doi.org/10.1508/cytologia.23.14 Semyarkhina SY and Kuptsou MS (1974). Cytomixis in various forms of sugarbeet. Vests. I. AN BSSE. Ser. Biyal. 4: 43-47. Sheidai M and Fadaei F (2005). Cytogenetic studies in some species of Bromus L., section Genea Dum. J. Genet 84: 189-194. http://dx.doi.org/10.1007/BF02715845 PMid:16131719 Singhal VK and Kumar P (2008a). Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J. Biosci. 33: 371-380. http://dx.doi.org/10.1007/s12038-008-0057-0 PMid:19005237 Singhal VK and Kumar P (2008b). Cytomixis during microsporogenesis in the diploid and tetraploid cytotypes of Withania somnifera (L.) Dunal, 1852 (Solanaceae). Comp. Cytogenet. 2: 85-92. Singhal VK, Gill BS and Dhaliwal RS (2007). Status of chromosomal diversity in the hardwood tree species of Punjab State. J. Cytol. Genet. 8: 67-83. Veilleux R (1985). Diploid and polyploid gametes in crop plants: mechanism of formation and utilization in plant breeding. Plant Breed. Rev. 3: 253-288. Wang ZX, Peng ZS and He YK (2000). Genetic analysis of male gamete abortion in Pinellia ternata. Acta Agron. Sin. 26: 83-86. Wu W, Zheng YL, Yang RW and Chen L (2003). Variation of the chromosome number and cytomixis of Houttuynia cordata from China. J. Syst. Evol. 41: 245-257. Yi TS, Li H and Li DZ (2005). Chromosome variation in the genus Pinellia (Araceae) in China and Japan. Bot. J. Linn. Soc. 147: 449-455. http://dx.doi.org/10.1111/j.1095-8339.2005.00381.x Zhu GH, Li H and Li R (2007). A synopsis and a new species of the E Asian genus Pinellia (Araceae). Willdenowia 37: 503-522. http://dx.doi.org/10.3372/wi.37.37209
J. - Z. Guan, Wang, J. - J., Cheng, Z. - H., Liu, Y., and Li, Z. - Y., Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata, vol. 11, pp. 121-130, 2012.
Bellucci M, Roscini C and Mariani A (2003). Cytomixis in pollen mother cells of Medicago sativa L. J. Hered. 94: 512-516. PMid:14691318 Boldrini KR, Pagliarini MS and Valle CB (2006). Cell fusion and cytomixis during microsporogenesis in Brachiaria humidicola (Poaceae). South Afr. J. Bot. 72: 478-481. Cantino PD, Doyle JA, Graham SW, Judd WS, et al. (2007). Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822-846. Cheng KC, Nie XW, Wang YX and Yang QL (1980). The relation between cytomixis and variation of chromosome numbers in pollen mother cells of rye (Secale cereals L.). Acta Bot. Sin. 22: 216-220. Cheng KC, Quiglan Y and Yongsen Z (1987). The relationship between cytomixis, chromosome mutation and karyotype evolution in Lily. Caryologia 40: 243-259. Falistocco E, Tosti N and Falcinelli M (1995). Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J. Hered. 86: 448-453. Furness CA and Rudall PJ (1999). Microsporogenesis in monocotyledons. Ann. Bot. 84: 475-499. Ghaffari GM (2006). Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr. J. Biotechnol. 5: 1450-1453. Haroun SA (1995). Cytomixis in pollen mother cells of Polygonum tomentosum Schrank. Cytologia 60: 257-260. Haroun SA (1996). Induced cytomixis and male sterility in pollen mother cells of Hordeum vulgare L. Delta J. Sci. 20: 172-183. Haroun SA, Al Shehri AM and Al Wadie HM (2004). Cytomixis in the microsporogenesis of Vicia faba L. (Fabaceae). Cytologia 69: 7-11. Kornicke M (1901). Über Ortsveränderung von Zellkarnern S B Niederhein. Ges. Nat. Heilk. Bonn. 14-25. Koul KK (1990). Cytomixis in pollen mother cells of Alopecurus arundinaceus Poir. Cytologia 55: 169-173. Lattoo SK, Khan S, Bamotra S and Dhar AK (2006). Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb.) Jacq. - an additional strategy and possible implications. J. Biosci. 31: 629-637. PMid:17301501 Li XF, Liu SB, Gao JR, Lu WH, et al. (2005). Abnormal pollen development of bread wheat - Leymus mollis partial amphiploid. Euphytica 144: 247-253. Li XF, Song ZQ, Feng DS and Wang HG (2009). Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat. Cereal Res. Commun. 37: 353-361. Li Z, Liu HL and Luo P (1995). Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 91: 131-136. Liang HX (1991). Karyomorphology of Gymnotheca and phylogeny of four genera in Saururaceae. Acta Bot. Yunnan 13: 303-307. Liu Y, Hui RK, Deng RN, Wang JJ, et al. (2012). Abnormal male meiosis causes pollen sterility in medicinal polyploidy plant Pinellia ternate. Genet. Mol. Res. 11: (in press). Mabberley DJ (1998). The Plant Book. A Portable Dictionary of the Vascular Plants. 2nd edn. Cambridge University Press, Cambridge. Maity S and Datta AK (2009). Meiosis in nine species of jute (Corchorus). Indian J. Sci. Tech. 2: 27-29. Malallah GA and Attia TA (2003). Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae). Bot. J. Linn. Soc. 143: 169-175. Mihara T (1960). On the reduction division of Houttuynia cordata Thunb. Bot. Mag. Tokyo 73: 498. Morikawa T and Leggett JM (1996). Cytological and morphological variations in wild populations of Avena canariensis from the Canary Islands. Genes Genet. Syst. 71: 15-21. Nirmala A and Rao PN (1996). Genesis of chromosome numerical mosaicism in higher plants. Nucleus 39: 151-175. Oginuma K, Sato H, Kono Y, Chen S, et al. (2007). Intraspecific polyploidy of Houttuynia cordata and evolution of chromosome number in the Saururaceae. Chromosome Bot. 2: 87-91. Omara MK (1976). Cytomixis in Lolium perenne. Chromosoma 55: 267-271. Sapre AB and Deshpande DS (1987). A change in chromosome number due to cytomixis in an interspecific hybrid of Coix L. Cytologia 52: 167-174. Sarvella P (1958). Cytomixis and loss of chromosomes in meiotic and somatic cells of Gossypium. Cytologia 23: 14-24. Sheidai M (2008). Cytogenetic distinctiveness of sixty-six tetraploid cotton (Gossypium hirsutum L.) cultivars based on meiotic data. Acta Bot. Croat. 67: 209-220. PMid:16131719 Shibata K and Miyake H (1908). Ueber Parthenogenesis bei Houttuynia cordata. Bot. Mag. Tokyo 22: 141-144. PMid:19005237 Singhal VK and Kumar P (2008a). Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J. Biosci. 33: 371-380. Singhal VK and Kumar P (2008b). Cytomixis during microsporogenesis in the diploid and tetraploid cytotypes of Withania somnifera (L.) Dunal, 1852 (Solanaceae). Comp. Cytogenet. 2: 85-92. Singhal VK, Gill BS and Dhaliwal RS (2007). Status of chromosomal diversity in the hardwood tree species of Punjab State. J. Cytol. Genet. 8: 67-83. Souza AM and Pagliarini MS (1997). Cytomixis in Brassica napus var. oleifera and Brassica campestris var. oleifera (Brassicaceae). Cytologia 62: 25-29. The Angiosperm Phylogeny Group (APG II) (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399-436. Veilleux R (1985). Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding. Plant Breed. Rev. 3: 253-288. Wu W, Zheng YL, Yang RW, Chen L, et al. (2003). Variation of the chromosome number and cytomixis of Houttuynia cordata from China. J. Syst. Evol. 41: 245-257.
F. - R. Wu, Liu, Y., Shang, M. - B., Yang, X. - X., Ding, B., Gao, J. - G., Wang, R., and Li, W. - Y., Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos, vol. 11, pp. 1099-1108, 2012.
Baqir S, Zhou Q, Renard JP and Smith LC (2002). Aberrant expression profile of imprinted genes in cloned mouse embryos reconstructed with ES cells treated with 5AzaC or TSA. Biol. Reprod. 66: 244-250. Dey SK, Lim H, Das SK, Reese J, et al. (2004). Molecular cues to implantation. Endocr. Rev. 25: 341-373. http://dx.doi.org/10.1210/er.2003-0020 PMid:15180948 Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, et al. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62: 1526-1535. http://dx.doi.org/10.1095/biolreprod62.6.1526 PMid:10819752 Eissenberg JC and Shilatifard A (2010). Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339: 240-249. http://dx.doi.org/10.1016/j.ydbio.2009.08.017 PMid:19703438 Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, et al. (2005). Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438: 1181-1185. http://dx.doi.org/10.1038/nature04290 PMid:16372014 Fleming TP, Kwong WY, Porter R, Ursell E, et al. (2004). The embryo and its future. Biol. Reprod. 71: 1046-1054. http://dx.doi.org/10.1095/biolreprod.104.030957 PMid:15215194 Glaser S, Lubitz S, Loveland KL, Ohbo K, et al. (2009). The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2: 5. http://dx.doi.org/10.1186/1756-8935-2-5 Guillemette B, Drogaris P, Lin HH, Armstrong H, et al. (2011). H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet. 7: e1001354. http://dx.doi.org/10.1371/journal.pgen.1001354 PMid:21483810    PMCid:3069113 Hamatani T, Carter MG, Sharov AA and Ko MS (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6: 117-131. http://dx.doi.org/10.1016/S1534-5807(03)00373-3 Huang JC, Yan LY, Lei ZL, Miao YL, et al. (2007a). Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol. Reprod. 77: 666-670. http://dx.doi.org/10.1095/biolreprod.107.062703 PMid:17582009 Huang JC, Lei ZL, Shi LH, Miao YL, et al. (2007b). Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem. Biophys. Res. Commun. 354: 77-83. http://dx.doi.org/10.1016/j.bbrc.2006.12.163 PMid:17210126 Kim JM, Ogura A, Nagata M and Aoki F (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod. 67: 760-766. http://dx.doi.org/10.1095/biolreprod.101.000612 PMid:12193382 Kim JM, Liu H, Tazaki M, Nagata M, et al. (2003). Changes in histone acetylation during mouse oocyte meiosis. J. Cell Biol. 162: 37-46. http://dx.doi.org/10.1083/jcb.200303047 PMid:12835313    PMCid:2172711 Li L, Zheng P and Dean J (2010). Maternal control of early mouse development. Development 137: 859-870. http://dx.doi.org/10.1242/dev.039487 PMid:20179092    PMCid:2834456 McLaren A (1971). Blastocysts in the mouse uterus: the effect of ovariectomy, progesterone and oestrogen. J. Endocrinol. 50: 515-526. http://dx.doi.org/10.1677/joe.0.0500515 PMid:5558058 Murata K, Kouzarides T, Bannister AJ and Gurdon JB (2010). Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin 3: 4. http://dx.doi.org/10.1186/1756-8935-3-4 Murray K (1964). The occurrence of epsilon-n-methyl lysine in histones. Biochemistry 3: 10-15. http://dx.doi.org/10.1021/bi00889a003 PMid:14114491 Nagy A, Gertsenstei M, Vintersten K and Behringer R (2003). Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 161-208. Nightingale KP, Gendreizig S, White DA, Bradbury C, et al. (2007). Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem. 282: 4408-4416. http://dx.doi.org/10.1074/jbc.M606773200 PMid:17166833 Ruthenburg AJ, Allis CD and Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25: 15-30. http://dx.doi.org/10.1016/j.molcel.2006.12.014 PMid:17218268 Shi X, Hong T, Walter KL, Ewalt M, et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96-99. PMid:16728974    PMCid:3089773 Shilatifard A (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20: 341-348. http://dx.doi.org/10.1016/j.ceb.2008.03.019 PMid:18508253    PMCid:2504688 Strömstedt M, Keeney DS, Waterman MR, Paria BC, et al. (1996). Preimplantation mouse blastocysts fail to express CYP genes required for estrogen biosynthesis. Mol. Reprod. Dev. 43: 428-436. http://dx.doi.org/10.1002/(SICI)1098-2795(199604)43:4<428::AID-MRD4>3.0.CO;2-R Wysocka J, Swigut T, Xiao H, Milne TA, et al. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86-90. PMid:16728976 Yamanaka K, Sugimura S, Wakai T, Kawahara M, et al. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 55: 638-644. http://dx.doi.org/10.1262/jrd.20245 PMid:19700928 Young LE and Fairburn HR (2000). Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology 53: 627-648. http://dx.doi.org/10.1016/S0093-691X(99)00263-0 Zhao Z, Fan L and Frick KM (2010). Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc. Natl. Acad. Sci. U. S. A. 107: 5605-5610. http://dx.doi.org/10.1073/pnas.0910578107 PMid:20212170    PMCid:2851775
Y. Liu, Liu, X. L., He, H., and Gu, Y. L., Four SNPs of insulin-induced gene 1 associated with growth and carcass traits in Qinchuan cattle in China, vol. 11, pp. 1209-1216, 2012.
Engelking LJ, Liang G, Hammer RE, Takaishi K, et al. (2005). Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J. Clin. Invest. 115: 2489-2498. http://dx.doi.org/10.1172/JCI25614 PMid:16100574 PMCid:1184040   Espenshade PJ and Hughes AL (2007). Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41: 401-427. http://dx.doi.org/10.1146/annurev.genet.41.110306.130315 PMid:17666007   Han LQ, Li HJ, Wang YY, Zhu HS, et al. (2010). mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle. Genet. Mol. Res. 9: 1250-1257. http://dx.doi.org/10.4238/vol9-2gmr814 PMid:20603810   Herbert A, Gerry NP, McQueen MB, Heid IM, et al. (2006). A common genetic variant is associated with adult and childhood obesity. Science 312: 279-283. http://dx.doi.org/10.1126/science.1124779 PMid:16614226   Horton JD (2002). Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem. Soc. Trans. 30: 1091-1095. http://dx.doi.org/10.1042/BST0301091 PMid:12440980   Hua X, Wu J, Goldstein JL, Brown MS, et al. (1995). Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 25: 667-673. http://dx.doi.org/10.1016/0888-7543(95)80009-B   Knoll A, Putnova L, Dvorak J and Cepica S (2000). A NciI PCR-RFLP within intron 2 of the porcine insulin-like growth factor 2 (IGF2) gene. Anim. Genet. 31: 150-151. http://dx.doi.org/10.1046/j.1365-2052.2000.00583.x PMid:10782228   Krapivner S, Chernogubova E, Ericsson M, Ahlbeck-Glader C, et al. (2007). Human evidence for the involvement of insulin-induced gene 1 in the regulation of plasma glucose concentration. Diabetologia 50: 94-102. http://dx.doi.org/10.1007/s00125-006-0479-x PMid:17106696   Liu GL, Jiang SW, Xiong YZ, Zheng R, et al. (2003). Association of PCR-RFLP polymorphisms of IGF2 gene with fat deposit related traits in pig resource family. Yi Chuan Xue Bao 30: 1107-1112. PMid:14986427   Liu YX, Zhou X, Li DQ, Cui QW, et al. (2010). Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genet. Mol. Res. 9: 891-896. http://dx.doi.org/10.4238/vol9-2gmr769 PMid:20467982   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Peng Y, Schwarz EJ, Lazar MA, Genin A, et al. (1997). Cloning, human chromosomal assignment, and adipose and hepatic expression of the CL-6/INSIG1 gene. Genomics 43: 278-284. http://dx.doi.org/10.1006/geno.1997.4821 PMid:9268630   Saunders MA, Hammer MF and Nachman MW (2002). Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics 162: 1849-1861. PMid:12524354 PMCid:1462360   Saunders MA, Slatkin M, Garner C, Hammer MF, et al. (2005). The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics 171: 1219-1229. http://dx.doi.org/10.1534/genetics.105.048140 PMid:16020776 PMCid:1456824   Sever N, Song BL, Yabe D, Goldstein JL, et al. (2003a). Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 278: 52479- 52490. http://dx.doi.org/10.1074/jbc.M310053200 PMid:14563840   Sever N, Yang T, Brown MS, Goldstein JL, et al. (2003b). Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell 11: 25-33. http://dx.doi.org/10.1016/S1097-2765(02)00822-5   Smith EM, Zhang Y, Baye TM, Gawrieh S, et al. (2010). INSIG1 influences obesity-related hypertriglyceridemia in humans. J. Lipid. Res. 51: 701-708. http://dx.doi.org/10.1194/jlr.M001404 PMid:19965593 PMCid:2838707   Sun LP, Li L, Goldstein JL and Brown MS (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280: 26483-26490. http://dx.doi.org/10.1074/jbc.M504041200 PMid:15899885   Sun LP, Seemann J, Goldstein JL and Brown MS (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc. Natl. Acad. Sci. U. S. A. 104: 6519-6526. http://dx.doi.org/10.1073/pnas.0700907104 PMid:17428919 PMCid:1851663   Szopa M, Meirhaeghe A, Luan J, Moreno LA, et al. (2010). No association between polymorphisms in the INSIG1 gene and the risk of type 2 diabetes and related traits. Am. J. Clin. Nutr. 92: 252-257. http://dx.doi.org/10.3945/ajcn.2010.29422 PMid:20444954   Takaishi K, Duplomb L, Wang MY, Li J, et al. (2004). Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc. Natl. Acad. Sci. U. S. A. 101: 7106-7111. http://dx.doi.org/10.1073/pnas.0401715101 PMid:15096598 PMCid:406473   Tiwari AK, Zai CC, Meltzer HY, Lieberman JA, et al. (2010). Association study of polymorphisms in insulin induced gene 2 (INSIG2) with antipsychotic-induced weight gain in European and African-American schizophrenia patients. Hum. Psychopharmacol. 25: 253-259. http://dx.doi.org/10.1002/hup.1111 PMid:20373477   Toomajian C and Kreitman M (2002). Sequence variation and haplotype structure at the human HFE locus. Genetics 161: 1609-1623. PMid:12196404 PMCid:1462210   Yabe D, Brown MS and Goldstein JL (2002). Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 99: 12753-12758. http://dx.doi.org/10.1073/pnas.162488899 PMid:12242332 PMCid:130532   Yabe D, Komuro R, Liang G, Goldstein JL, et al. (2003). Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc. Natl. Acad. Sci. U. S. A. 100: 3155-3160. http://dx.doi.org/10.1073/pnas.0130116100 PMid:12624180 PMCid:152262
D. He, Liu, Y., Cai, M., Pan, H. T., Zhang, Q. X., Wang, X. Y., and Wang, X. J., Genetic diversity of Lagerstroemia (Lythraceae) species assessed by simple sequence repeat markers, vol. 11, pp. 3522-3533, 2012.
Ali ML, Rajewski JF, Baenziger PS and Gill KS (2008). Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol. Breed. 21: 497-509. http://dx.doi.org/10.1007/s11032-007-9149-z   Barkley NA, Roose ML, Krueger RR and Federici CT (2006). Assessing genetic diversity and population structure in a Citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor. Appl. Genet. 112: 1519-1531. http://dx.doi.org/10.1007/s00122-006-0255-9 PMid:16699791   Bohn M, Utz HF and Melchinger AE (1999). Genetic similarities among winter wheat cultivars determined on the basis of RFLPs and SSRs and their use for predicting progeny variance. Crop Sci. 39: 228-237. http://dx.doi.org/10.2135/cropsci1999.0011183X003900010035x   Brickell C (1996). Encyclopedia of Garden Plants. Macmillan Press, New York, 250-252.   Cai M, Meng R, Pan HT and Gao YK (2010). Isolation and characterization of microsatellite markers from Lagerstroemia caudata (Lythraceae) and cross-amplification in other related species. Conservat. Genet. Resour. 2: 89-91. http://dx.doi.org/10.1007/s12686-010-9197-2   Cai M, Pan HT, Wang XF and He D (2011). Development of novel microsatellites in Lagerstroemia indica and DNA fingerprinting in Chinese Lagerstroemia cultivars. Sci. Hortic. 131: 88-94. http://dx.doi.org/10.1016/j.scienta.2011.09.031   Dias PMB, Julier B, Sampoux JP and Barre P (2008). Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica 160: 189-205. http://dx.doi.org/10.1007/s10681-007-9534-z   Dirr MA, Waters V and Kardos J (2005). New Protected Woody Plant Introductions from the University of Georgia. Department of Horticulture, University of Georgia, Athens. Available at [http://www.canr.org/Dirr%20WoodyPlts-05.pdf]. Accessed November 27, 2010.   Egolf DR (1967). Four new Lagerstroemia indica L. cultivars. -'Catawba', 'Conestoga', 'Potomac' and 'Powhatan'. Baileya 15: 7-13.   Egolf DR (1981). 'Muskogee' and 'Natchez' Lagerstroemia. HortScience 16: 576-577.   Egolf DR (1986). 'Acoma', 'Hopi', 'Pecos' and 'Zuni' Lagerstroemia. HortScience 21: 1250-1252.   Egolf DR (1987). 'Apalachee', 'Comanche', 'Lipan', 'Osage', 'Sioux' and 'Yuma' Lagerstroemia. HortScience 22: 674.   Egolf DR (1990). 'Choctaw' Lagerstroemia. HortScience 25: 992-993.   Egolf DR and Andrick AO (1978). The Lagerstroemia Handbook/Checklist: A Guide to Crape Myrtle Cultivars. American Association of Botanical Gardens and Arboreta, Las Cruces. PMid:632418   Gu CH, Bao ZY, Wang SX and Zhang QX (2010). AFLP analysis on the genetic relationship of Lagerstroemia subcostata, Lagerstroemia limii and 37 cultivated varieties. Mol. Plant Breed. 8: 730-735.   Innan H, Terauchi R and Miyashita NT (1997). Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146: 1441-1452. PMid:9258686 PMCid:1208087   Liu K and Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. http://dx.doi.org/10.1093/bioinformatics/bti282 PMid:15705655   Mehes M, Nkongolo KK and Michael P (2009). Assessing genetic diversity and structure of fragmented populations of eastern white pine (Pinus strobus) and western white pine (P. monticola) for conservation management. J. Plant Ecol. 2: 143-151. http://dx.doi.org/10.1093/jpe/rtp016   Nan P, Shi SH, Peng SL and Tian CJ (2003). Genetic diversity in Primula obconica (Primulaceae) from Central and South-west China as revealed by ISSR markers. Ann. Bot. 91: 329-333. http://dx.doi.org/10.1093/aob/mcg018   Narasimhamoorthy B, Saha M, Swaller CT and Bouton JH (2008). Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg. Res. 1: 136-146. http://dx.doi.org/10.1007/s12155-008-9011-0   Pooler MR (2003). Molecular genetic diversity among 12 clones of Lagerstroemia fauriei revealed by AFLP and RAPD markers. HortScience 38: 256-259.   Pooler MR (2006). 'Arapaho' and 'Cheyenne' Lagerstroemia. HortScience 41: 855-856.   Pounders C (2007). Evaluation of interspecific hybrids between Lagerstroemia indica and L. speciosa. HortScience 42: 1317-1322.   Rinehart TA and Pounders CT (2010). Estimating diversity among Lagerstroemia species and hybrids using SSR markers. Acta Hort. 885: 285-290.   Schneider S, Roessli D and Excoffier L (2000). Arlequin ver. 2.000: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory. University of Geneva, Geneva.   Schuelke M (2000). An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233-234. http://dx.doi.org/10.1038/72708 PMid:10657137   Sereno ML, Albuquerque PSB, Vencovsky R and Figueira A (2006). Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated by microsatellite markers. Conservat. Genet. 7: 13-24. http://dx.doi.org/10.1007/s10592-005-7568-0   Subramanyam K, Muralidhararao D and Devanna N (2009). Genetic diversity assessment of wild and cultivated varieties of Jatropha curcas (L.) in India by RAPD analysis. Afr. J. Biotechnol. 8: 1900-1910.   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Wang XW, Dean D, Wadl P and Hadziabdic D (2010). Development of microsatellite markers from crape myrtle (Lagerstroemia L.). HortScience 45: 842-844.   Wang XW, Wadl PA, Pounders C and Trigiano RN (2011). Evaluation of genetic diversity and pedigree within crape myrtle cultivars using simple sequence repeat markers. J. Am. Soc. Hort. Sci. 136: 116-128.   Wright S (1969). Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago.   Yang YL, Zhang YD, Zhang XY and Lei XH (2004). Study on genetic diversity of wild Lagerstroemia from Baokang. J. Huazhong Agr. Univ. 23: 667-670.   Yeh FC, Yang RC and Boyle T (1999). POPGENE (Microsoft Windows-Based Freeware for Population Genetic Analysis) Version 1.31. Centre for International Forestry Research, University of Alberta, Edmonton.   Zhang C, Chen X, He T, Liu X, et al. (2007). Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. J. Genet. Genomics 34: 947-955. http://dx.doi.org/10.1016/S1673-8527(07)60106-4   Zhang J, Wang LS, Gao JM, Shu QY, et al. (2008). Determination of anthocyanins and exploration of relationship between their composition and petal coloration in crape myrtle (Lagerstroemia hybrid). J. Integr. Plant Biol. 50: 581-588. http://dx.doi.org/10.1111/j.1744-7909.2008.00649.x PMid:18713426   Zhang QX (1991). Studies on cultivars of crape myrtle (Lagerstroemia indica) and their uses in urban greening. J. Beijing For. Univ. 13: 57-66.   Zhu RR, Gao YK, Xu LJ and Zhang QX (2011). Genetic diversity of Aquilegia (Ranunculaceae) species and cultivars assessed by AFLPs. Genet. Mol. Res. 10: 817-827. http://dx.doi.org/10.4238/vol10-2gmr1112 PMid:21574138
2011
R. F. Zhou, Liu, Y., Wang, Y. X., Mo, W., and Yu, M., Coagulation factor III (tissue factor) is required for vascularization in zebrafish embryos, vol. 10, pp. 4147-4157, 2011.
Bazan JF (1990). Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. U. S. A. 87: 6934-6938. http://dx.doi.org/10.1073/pnas.87.18.6934 PMid:2169613 PMCid:54656   Berghmans S, Murphey RD, Wienholds E, Neuberg D, et al. (2005). tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl. Acad. Sci. U. S. A. 102: 407-412. http://dx.doi.org/10.1073/pnas.0406252102 PMid:15630097 PMCid:544293   Carmeliet P, Mackman N, Moons L, Luther T, et al. (1996). Role of tissue factor in embryonic blood vessel development. Nature 383: 73-75. http://dx.doi.org/10.1038/383073a0 PMid:8779717   Carson SD and Brozna JP (1993). The role of tissue factor in the production of thrombin. Blood Coagul. Fibrinolysis 4: 281-292. http://dx.doi.org/10.1097/00001721-199304000-00010 PMid:8499566   Chen D and Dorling A (2009). Critical roles for thrombin in acute and chronic inflammation. J. Thromb. Haemost. 7 (Suppl 1): 122-126. http://dx.doi.org/10.1111/j.1538-7836.2009.03413.x PMid:19630783   Edgington TS, Mackman N, Brand K and Ruf W (1991). The structural biology of expression and function of tissue factor. Thromb. Haemost. 66: 67-79. PMid:1833852   He Y, Chang G, Zhan S, Song X, et al. (2008). Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells. Biochem. Biophys. Res. Commun. 370: 489-494. http://dx.doi.org/10.1016/j.bbrc.2008.03.133 PMid:18395519   Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, et al. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253-310. http://dx.doi.org/10.1002/aja.1002030302 PMid:8589427   Mackman N, Morrissey JH, Fowler B and Edgington TS (1989). Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade. Biochemistry 28: 1755-1762. http://dx.doi.org/10.1021/bi00430a050 PMid:2719931   Mackman N, Sawdey MS, Keeton MR and Loskutoff DJ (1993). Murine tissue factor gene expression in vivo. Tissue and cell specificity and regulation by lipopolysaccharide. Am. J. Pathol. 143: 76-84. PMid:8317556 PMCid:1886940   Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835-846. http://dx.doi.org/10.1016/0092-8674(93)90573-9   Morrissey JH, Fakhrai H and Edgington TS (1987). Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50: 129-135. http://dx.doi.org/10.1016/0092-8674(87)90669-6   Nemerson Y (1988). Tissue factor and hemostasis. Blood 71: 1-8. PMid:3275472   Osterud B, Bajaj MS and Bajaj SP (1995). Sites of tissue factor pathway inhibitor (TFPI) and tissue factor expression under physiologic and pathologic conditions. On behalf of the Subcommittee on Tissue Factor Pathway Inhibitor (TFPI) of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost. 73: 873-875. PMid:7482419   Pawlinski R and Mackman N (2004). Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit. Care Med. 32: S293-S297. http://dx.doi.org/10.1097/01.CCM.0000128445.95144.B8 PMid:15118533   Sehnert AJ, Huq A, Weinstein BM, Walker C, et al. (2002). Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 31: 106-110. http://dx.doi.org/10.1038/ng875 PMid:11967535   Soifer SJ, Peters KG, O'Keefe J and Coughlin SR (1994). Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am. J. Pathol. 144: 60-69. PMid:8291612 PMCid:1887128   Spicer EK, Horton R, Bloem L, Bach R, et al. (1987). Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA. Proc. Natl. Acad. Sci. U. S. A. 84: 5148-5152. http://dx.doi.org/10.1073/pnas.84.15.5148 PMid:3037536 PMCid:298811   Stainier DY (2001). Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2: 39-48. http://dx.doi.org/10.1038/35047564 PMid:11253067   Stainier DY, Weinstein BM, Detrich HW III, Zon LI, et al. (1995). Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121: 3141-3150. PMid:7588049   Stein C, Caccamo M, Laird G and Leptin M (2007). Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 8: R251. http://dx.doi.org/10.1186/gb-2007-8-11-r251 PMid:18039395 PMCid:2258186   Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, et al. (1996). Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88: 1583-1587. PMid:8781413   Tuddenham EG, Pemberton S and Cooper DN (1995). Inherited factor VII deficiency: genetics and molecular pathology. Thromb. Haemost. 74: 313-321. PMid:8578478   Westerfield M (2000). The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Oregon.   Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, et al. (1993). flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118: 489-498. PMid:8223275
P. Xuan, Guo, M. Z., Wang, J., Wang, C. Y., Liu, X. Y., and Liu, Y., Genetic algorithm-based efficient feature selection for classification of pre-miRNAs, vol. 10, pp. 588-603, 2011.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi:10.1016/S0092-8674(04)00045-5 Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25: 989-995. doi:10.1093/bioinformatics/btp107 PMid:19233894 Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. doi:10.1016/j.cell.2004.12.031 PMid:15652478 Bushati N and Cohen SM (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23: 175-205. doi:10.1146/annurev.cellbio.23.090506.123406 PMid:17506695 Chang DT, Wang CC and Chen JW (2008). Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9 (Suppl 12): S2. doi:10.1186/1471-2105-9-S12-S2 PMid:19091019    PMCid:2638167 Chatterjee S and Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461: 546-549. doi:10.1038/nature08349 PMid:19734881 Fera D, Kim N, Shiffeldrim N, Zorn J, et al. (2004). RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5: 88. doi:10.1186/1471-2105-5-88 PMid:15238163    PMCid:471545 Freyhult E, Gardner PP and Moulton V (2005). A comparison of RNA folding measures. BMC Bioinformatics 6: 241. doi:10.1186/1471-2105-6-241 PMid:16202126    PMCid:1274297 Gan HH, Fera D, Zorn J, Shiffeldrim N, et al. (2004). RAG: RNA-As-Graphs database - concepts, analysis, and features. Bioinformatics 20: 1285-1291. doi:10.1093/bioinformatics/bth084 PMid:14962931 Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. doi:10.1093/nar/gkm952 PMid:17991681    PMCid:2238936 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, et al. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly 125: 167-188. Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344. doi:10.1093/nar/gkm368 PMid:17553836    PMCid:1933124 Moulton V, Zuker M, Steel M, Pointon R, et al. (2000). Metrics on RNA secondary structures. J. Comput. Biol. 7: 277-292. doi:10.1089/10665270050081522 PMid:10890402 Nam JW, Shin KR, Han J, Lee Y, et al. (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33: 3570-3581. doi:10.1093/nar/gki668 PMid:15987789    PMCid:1159118 Ng KL and Mishra SK (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23: 1321-1330. doi:10.1093/bioinformatics/btm026 PMid:17267435 Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo. Schultes EA, Hraber PT and LaBean TH (1999). Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49: 76-83. doi:10.1007/PL00006536 PMid:10368436 Seffens W and Digby D (1999). mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27: 1578-1584. doi:10.1093/nar/27.7.1578 PMid:10075987    PMCid:148359 Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6: 267. doi:10.1186/1471-2105-6-267 PMid:16274478    PMCid:1315341 Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6: 310. doi:10.1186/1471-2105-6-310 PMid:16381612    PMCid:1360673 Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA identification using a naive Bayes classifier. Bioinformatics 22: 1325-1334. doi:10.1093/bioinformatics/btl094 PMid:16543277 Yousef M, Jung S, Showe LC and Showe MK (2008). Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Biol. 3: 2. doi:10.1186/1748-7188-3-2 PMid:18226233    PMCid:2248178 Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63: 246-254. doi:10.1007/s00018-005-5467-7 PMid:16395542
D. Chen, Liu, J. L., Liu, Y., Zhu, J., and Wang, S. W., Lack of an association between -308G>A polymorphism of the TNF-α gene and liver cirrhosis risk based on a meta-analysis, vol. 10, pp. 2765-2774, 2011.
Bahr MJ, el Menuawy M, Boeker KH, Musholt PB, et al. (2003). Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int. 23: 420-425. http://dx.doi.org/10.1111/j.1478-3231.2003.00873.x PMid:14986816 Bataller R, North KE and Brenner DA (2003). Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37: 493-503. http://dx.doi.org/10.1053/jhep.2003.50127 PMid:12601343 Cha C and Dematteo RP (2005). Molecular mechanisms in hepatocellular carcinoma development. Best Pract. Res. Clin. Gastroenterol. 19: 25-37. http://dx.doi.org/10.1016/j.bpg.2004.11.005 Chan HL, Tse AM, Chim AM, Wong VW, et al. (2008). Association of cytokine gene polymorphisms and liver fibrosis in chronic hepatitis B. J. Gastroenterol. Hepatol. 23: 783-789. http://dx.doi.org/10.1111/j.1440-1746.2007.05110.x PMid:17645476 Chen YQ, Lin JS, Tian DY and Liang KH (2003). Study on the association between the promoter polymorphism of TNF gene and cirrhosis. World J. Infect. 3: 186-190. Choi J and Ou JH (2006). Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G847-G851. http://dx.doi.org/10.1152/ajpgi.00522.2005 PMid:16603728 Chuang E, Del Vecchio A, Smolinski S, Song XY, et al. (2004). Biomedicines to reduce inflammation but not viral load in chronic HCV-what’s the sense? Trends Biotechnol. 22: 517-523. http://dx.doi.org/10.1016/j.tibtech.2004.08.011 PMid:15450745 Commins SP, Borish L and Steinke JW (2010). Immunologic messenger molecules: cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 125: S53-S72. http://dx.doi.org/10.1016/j.jaci.2009.07.008 PMid:19932918 Constantini PK, Wawrzynowicz-Syczewska M, Clare M, Boron-Kaczmarska A, et al. (2002). Interleukin-1, interleukin-10 and tumour necrosis factor-alpha gene polymorphisms in hepatitis C virus infection: an investigation of the relationships with spontaneous viral clearance and response to alpha-interferon therapy. Liver 22: 404-412. http://dx.doi.org/10.1034/j.1600-0676.2002.01553.x Cua IH, Hui JM, Bandara P, Kench JG, et al. (2007). Insulin resistance and liver injury in hepatitis C is not associated with virus-specific changes in adipocytokines. Hepatology 46: 66-73. http://dx.doi.org/10.1002/hep.21703 PMid:17596870 Cuenca J, Perez CA, Aguirre AJ, Schiattino I, et al. (2001). Genetic polymorphism at position-308 in the promoter region of the tumor necrosis factor (TNF): implications of its allelic distribution on susceptibility or resistance to diseases in the Chilean population. Biol. Res. 34: 237-241. http://dx.doi.org/10.4067/S0716-97602001000300011 PMid:11715861 Elsammak M, Refai W, Elsawaf A, Abdel-Fattah I, et al. (2005). Elevated serum tumor necrosis factor alpha and ferritin may contribute to the insulin resistance found in HCV positive Egyptian patients. Curr. Med. Res. Opin. 21: 527-534. http://dx.doi.org/10.1185/030079905X38141 PMid:15899101 Falasca K, Ucciferri C, Dalessandro M, Zingariello P, et al. (2006). Cytokine patterns correlate with liver damage in patients with chronic hepatitis B and C. Ann. Clin. Lab. Sci. 36: 144-150. PMid:16682509 Fan LY, Zhong RQ, Tu XQ, Pfeiffer T, et al. (2004). Genetic association of tumor necrosis factor (TNF)-alpha polymorphisms with primary biliary cirrhosis and autoimmune liver diseases in a Chinese population. Zhonghua Gan Zang Bing Za Zhi 12: 160-162. PMid:15059302 Friedman SL (2010). Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol. 7: 425-436. http://dx.doi.org/10.1038/nrgastro.2010.97 Gordon MA, Oppenheim E, Camp NJ, di Giovine FS, et al. (1999). Primary biliary cirrhosis shows association with genetic polymorphism of tumour necrosis factor alpha promoter region. J. Hepatol. 31: 242-247. http://dx.doi.org/10.1016/S0168-8278(99)80220-7 Hajeer AH and Hutchinson IV (2000). TNF-alpha gene polymorphism: clinical and biological implications. Microsc. Res. Tech. 50: 216-228. http://dx.doi.org/10.1002/1097-0029(20000801)50:3<216::AID-JEMT5>3.0.CO;2-Q Hajeer AH and Hutchinson IV (2001). Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum. Immunol. 62: 1191-1199. http://dx.doi.org/10.1016/S0198-8859(01)00322-6 Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919 Jeng JE, Tsai JF, Chuang LY, Ho MS, et al. (2007). Tumor necrosis factor-alpha 308.2 polymorphism is associated with advanced hepatic fibrosis and higher risk for hepatocellular carcinoma. Neoplasia 9: 987-992. http://dx.doi.org/10.1593/neo.07781 PMid:18030367 Jiang ZL, Zhang W, Zhang H and Liu YB (2009). Relationship between TNF-alpha, TGF-beta1 and IL-10 genetic polymorphisms and post- hepatitis B cirrhosis. Shi Jie Hua Ren Xiao Hua 17: 3263-3268. Jones DE, Watt FE, Grove J, Newton JL, et al. (1999). Tumour necrosis factor-alpha promoter polymorphisms in primary biliary cirrhosis. J. Hepatol. 30: 232-236. http://dx.doi.org/10.1016/S0168-8278(99)80067-1 Juran BD, Atkinson EJ, Larson JJ, Schlicht EM, et al. (2010). Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: evidence for a gene-gene interaction. Hepatology 52: 223-229. http://dx.doi.org/10.1002/hep.23667 PMid:20578265    PMCid:2922843 Kamal SM, Turner B, He Q, Rasenack J, et al. (2006). Progression of fibrosis in hepatitis C with and without schistosomiasis: correlation with serum markers of fibrosis. Hepatology 43: 771-779. http://dx.doi.org/10.1002/hep.21117 PMid:16557547 Li Y, Chang M, Abar O, Garcia V, et al. (2009). Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J. Hepatol. 51: 750-757. http://dx.doi.org/10.1016/j.jhep.2009.04.027 PMid:19586676    PMCid:2883297 Lim YS and Kim WR (2008). The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis. 12: 733- 46, vii. http://dx.doi.org/10.1016/j.cld.2008.07.007 PMid:18984463 Mallat A, Hezode C and Lotersztajn S (2008). Environmental factors as disease accelerators during chronic hepatitis C. J. Hepatol. 48: 657-665. http://dx.doi.org/10.1016/j.jhep.2008.01.004 PMid:18279998 Nguyen-Khac E, Houchi H, Daoust M, Dupas JL, et al. (2008). The -308 TNFalpha gene polymorphism in severe acute alcoholic hepatitis: identification of a new susceptibility marker. Alcohol. Clin. Exp. Res. 32: 822-828. http://dx.doi.org/10.1111/j.1530-0277.2008.00629.x PMid:18336639 Niro GA, Poli F, Andriulli A, Bianchi I, et al. (2009). TNF-alpha polymorphisms in primary biliary cirrhosis: a northern and southern Italian experience. Ann. N. Y. Acad. Sci. 1173: 557-563. http://dx.doi.org/10.1111/j.1749-6632.2009.04741.x PMid:19758199 Oo YH, Hubscher SG and Adams DH (2010). Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatol. Int. 4: 475-493. http://dx.doi.org/10.1007/s12072-010-9183-5 PMid:20827405    PMCid:2900560 Pastor IJ, Laso FJ, Romero A and Gonzalez-Sarmiento R (2005). -238 G>A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men. Alcohol. Clin. Exp. Res. 29: 1928-1931. http://dx.doi.org/10.1097/01.alc.0000187595.19324.ca Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236 Poynard T, Mathurin P, Lai CL, Guyader D, et al. (2003). A comparison of fibrosis progression in chronic liver diseases. J. Hepatol. 38: 257-265. http://dx.doi.org/10.1016/S0168-8278(02)00413-0 Schwabe RF and Brenner DA (2006). Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G583-G589. http://dx.doi.org/10.1152/ajpgi.00422.2005 PMid:16537970 Tahara T, Shibata T, Nakamura M, Yamashita H, et al. (2009). Effect of polymorphisms in the 3’ untranslated region (3’- UTR) of vascular endothelial growth factor gene on gastric cancer and peptic ulcer diseases in Japan. Mol. Carcinog. 48: 1030-1037. http://dx.doi.org/10.1002/mc.20554 PMid:19496079 Tanaka A, Quaranta S, Mattalia A, Coppel R, et al. (1999). The tumor necrosis factor-alpha promoter correlates with progression of primary biliary cirrhosis. J. Hepatol. 30: 826-829. http://dx.doi.org/10.1016/S0168-8278(99)80135-4 Thimme R, Wieland S, Steiger C, Ghrayeb J, et al. (2003). CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77: 68-76. http://dx.doi.org/10.1128/JVI.77.1.68-76.2003 PMid:12477811    PMCid:140637 Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195 Wilson AG, di Giovine FS, Blakemore AI and Duff GW (1992). Single base polymorphism in the human tumour necrosis factor alpha (TNF-alpha) gene detectable by NcoI restriction of PCR product. Hum. Mol. Genet. 1: 353. http://dx.doi.org/10.1093/hmg/1.5.353 PMid:1363876 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
J. Fan, Francis, F., Liu, Y., Chen, J. L., and Cheng, D. F., An overview of odorant-binding protein functions in insect peripheral olfactory reception, vol. 10. pp. 3056-3069, 2011.
Beale MH, Birkett MA, Bruce TJ, Chamberlain K, et al. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. U. S. A. 103: 10509-10513. http://dx.doi.org/10.1073/pnas.0603998103 PMid:16798877    PMCid:1502488 Benton R, Sachse S, Michnick SW and Vosshall LB (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4: e20. http://dx.doi.org/10.1371/journal.pbio.0040020 PMid:16402857    PMCid:1334387 Benton R, Vannice KS and Vosshall LB (2007). An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: 289-293. http://dx.doi.org/10.1038/nature06328 PMid:17943085 Bette S, Breer H and Krieger J (2002). Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem. Mol. Biol. 32: 241-246. http://dx.doi.org/10.1016/S0965-1748(01)00171-0 Blomquist GJ and Vogt RG (2003). Insect Pheromone Biochemistry and Molecular Biology. In: The Biosynthesis and Detection of Pheromones and Plant Volatiles (Blomquist GJ and Vogt RG, eds.). Elsevier Academic Press, London, 3-18. Buck L and Axel R (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175-187. http://dx.doi.org/10.1016/0092-8674(91)90418-X Campanacci V, Krieger J, Bette S, Sturgis JN, et al. (2001). Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J. Biol. Chem. 276: 20078-20084. http://dx.doi.org/10.1074/jbc.M100713200 PMid:11274212 Clyne PJ, Warr CG, Freeman MR, Lessing D, et al. (1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327-338. http://dx.doi.org/10.1016/S0896-6273(00)81093-4 Damberger F, Nikonova L, Horst R, Peng G, et al. (2000). NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 9: 1038-1041. http://dx.doi.org/10.1110/ps.9.5.1038 PMid:10850815    PMCid:2144629 Damberger FF, Ishida Y, Leal WS and Wuthrich K (2007). Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J. Mol. Biol. 373: 811-819. http://dx.doi.org/10.1016/j.jmb.2007.07.078 PMid:17884092 Foret S and Maleszka R (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 16: 1404-1413. http://dx.doi.org/10.1101/gr.5075706 PMid:17065610    PMCid:1626642 Francis F, Vandermoten S, Verheggen F, Lognay G, et al. (2005a). Is the (E)-farnesene only volatile terpenoid in aphids? J. Appl. Entomol. 129: 6-11. http://dx.doi.org/10.1111/j.1439-0418.2005.00925.x Francis F, Martin T, Lognay G and Haubruge E (2005b). Role of (E)-beta-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Eur. J. Entomol. 102: 431-436. Friedrich RW and Korsching SI (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18: 737-752. http://dx.doi.org/10.1016/S0896-6273(00)80314-1 Gao Q, Yuan B and Chess A (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3: 780-785. http://dx.doi.org/10.1038/75753 PMid:10816314 Gong DP, Zhang HJ, Zhao P, Xia QY, et al. (2009). The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10: 332. http://dx.doi.org/10.1186/1471-2164-10-332 PMid:19624863    PMCid:2722677 Ha TS and Smith DP (2006). A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26: 8727-8733. http://dx.doi.org/10.1523/JNEUROSCI.0876-06.2006 PMid:16928861 Hallem EA, Nicole FA, Zwiebel LJ and Carlson JR (2004). Olfaction: mosquito receptor for human-sweat odorant. Nature 427: 212-213. http://dx.doi.org/10.1038/427212a PMid:14724626 Hekmat-Scafe DS, Scafe CR, McKinney AJ and Tanouye MA (2002). Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 12: 1357-1369. http://dx.doi.org/10.1101/gr.239402 PMid:12213773    PMCid:186648 Hildebrand JG and Shepherd GM (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20: 595-631. http://dx.doi.org/10.1146/annurev.neuro.20.1.595 PMid:9056726 Honson N, Johnson MA, Oliver JE, Prestwich GD, et al. (2003). Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses 28: 479-489. http://dx.doi.org/10.1093/chemse/28.6.479 PMid:12907585 Hooper AM, Dufour S, He X, Muck A, et al. (2009). High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues. Chem. Commun. 5725-5727. http://dx.doi.org/10.1039/b914294k PMid:19774249 Horst R, Damberger F, Luginbühl P, Güntert P, et al. (2001). NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. U. S. A. 98: 14374-14379. http://dx.doi.org/10.1073/pnas.251532998 PMid:11724947    PMCid:64689 Jacobs SP, Liggins AP, Zhou JJ, Pickett JA, et al. (2005). OS-D-like genes and their expression in aphids (Hemiptera: Aphididae). Insect Mol. Biol. 14: 423-432. http://dx.doi.org/10.1111/j.1365-2583.2005.00573.x PMid:16033435 Jin X, Ha TS and Smith DP (2008). SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. U. S. A.105: 10996-11001. http://dx.doi.org/10.1073/pnas.0803309105 PMid:18653762    PMCid:2504837 Kaissling KE (1972). Kinetic Studies of Transduction in Olfactory Receptors of Bombyx Mori. In: Int. Symp. Olfaction and Taste IV (Schneider D, ed.). Wissenschaftl Verlagsges, Stuttgart, 207-213. Kaissling KE (1998a). Flux detectors versus concentration detectors: two types of chemoreceptors. Chem. Senses 23: 99-111. http://dx.doi.org/10.1093/chemse/23.1.99 PMid:9530975 Kaissling KE (1998b). Pheromone deactivation catalyzed by receptor molecules: a quantitative kinetic model. Chem. Senses 23: 385-395. http://dx.doi.org/10.1093/chemse/23.4.385 PMid:9759524 Kaissling KE (2001). Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses 26: 125-150. http://dx.doi.org/10.1093/chemse/26.2.125 PMid:11238244 Kaissling KE (2009). Olfactory perireceptor and receptor events in moths: a kinetic model revised. J. Comp Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195: 895-922. http://dx.doi.org/10.1007/s00359-009-0461-4 PMid:19697043    PMCid:2749182 Kaissling KE and Thorson J (1980). Insect Olfactory Sensilla: Structure, Chemical and Electrical Aspects of the Functional Organization. In: Receptors for Transmitters, Hormones and Pheromones in Insects (Sattelle DB, Hall LM and Hildebrand JG, eds.). Elsevier, Amsterdam, 261-282. Kasang G, von Proff L and Nicholls M (1988). Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus. Z. Naturforsch. C Biosci. 43c: 275-284. Keller A and Vosshall LB (2007). Influence of odorant receptor repertoire on odor perception in humans and fruit flies. Proc. Natl. Acad. Sci. U. S. A. 104: 5614-5619. http://dx.doi.org/10.1073/pnas.0605321104 PMid:17372215    PMCid:1838502 Kim MS, Repp A and Smith DP (1998). LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150: 711-721. PMid:9755202    PMCid:1460366 Klein U (1987). Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 17: 1193-1204. http://dx.doi.org/10.1016/0020-1790(87)90093-X Kruse SW, Zhao R, Smith DP and Jones DN (2003). Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Biol. 10: 694-700. http://dx.doi.org/10.1038/nsb960 PMid:12881720 Kurtovic A, Widmer A and Dickson BJ (2007). A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446: 542-546. http://dx.doi.org/10.1038/nature05672 PMid:17392786 Laissue PP and Vosshall LB (2008). The olfactory sensory map in Drosophila. Adv. Exp. Med. Biol. 628: 102-114. http://dx.doi.org/10.1007/978-0-387-78261-4_7 PMid:18683641 Lartigue A, Gruez A, Spinelli S, Riviere S, et al. (2003). The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J. Biol. Chem. 278: 30213-30218. http://dx.doi.org/10.1074/jbc.M304688200 PMid:12766173 Laughlin JD, Ha TS, Jones DN and Smith DP (2008). Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133: 1255-1265. http://dx.doi.org/10.1016/j.cell.2008.04.046 PMid:18585358 Lautenschlager C, Leal WS and Clardy J (2005). Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem. Biophys. Res. Commun. 335: 1044-1050. http://dx.doi.org/10.1016/j.bbrc.2005.07.176 PMid:16111659 Lautenschlager C, Leal WS and Clardy J (2007). Bombyx mori pheromone-binding protein binding nonpheromone ligands: implications for pheromone recognition. Structure 15: 1148-1154. http://dx.doi.org/10.1016/j.str.2007.07.013 PMid:17850754    PMCid:2072049 Lazar J, Greenwood DR, Rasmussen LE and Prestwich GD (2002). Molecular and functional characterization of an odorant binding protein of the Asian elephant, Elephas maximus: implications for the role of lipocalins in mammalian olfaction. Biochemistry 41: 11786-11794. http://dx.doi.org/10.1021/bi0256734 PMid:12269821 Leal WS, Chen AM, Ishida Y, Chiang VP, et al. (2005). Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. U. S. A. 102: 5386-5391. http://dx.doi.org/10.1073/pnas.0501447102 PMid:15784736    PMCid:555038 Leal WS, Barbosa RM, Xu W, Ishida Y, et al. (2008). Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3: e3045. http://dx.doi.org/10.1371/journal.pone.0003045 PMid:18725946    PMCid:2516325 Lee D, Damberger FF, Peng G, Horst R, et al. (2002). NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 531: 314-318. http://dx.doi.org/10.1016/S0014-5793(02)03548-2 Leite NR, Krogh R, Xu W, Ishida Y, et al. (2009). Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”. PLoS One 4: e8006. http://dx.doi.org/10.1371/journal.pone.0008006 PMid:19956631    PMCid:2778553 Lescop E, Briand L, Pernollet JC, Van Heijenoort C, et al. (2001). Letter to the Editor: 1H, 13C and 15N chemical shift assignment of the honeybee odorant-binding protein ASP2. J. Biomol. NMR 21: 181-182. Mao Y, Xu X, Xu W, Ishida Y, et al. (2010). Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc. Natl. Acad. Sci. U. S. A. 107: 19102-19107. http://dx.doi.org/10.1073/pnas.1012274107 PMid:20956299    PMCid:2973904 Matsuo T, Sugaya S, Yasukawa J, Aigaki T, et al. (2007). Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5: e118. http://dx.doi.org/10.1371/journal.pbio.0050118 PMid:17456006    PMCid:1854911 Mohanty S, Zubkov S and Gronenborn AM (2004). The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J. Mol. Biol. 337: 443-451. http://dx.doi.org/10.1016/j.jmb.2004.01.009 PMid:15003458 Mohl C, Breer H and Krieger J (2002). Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invert. Neurosci. 4: 165-174. http://dx.doi.org/10.1007/s10158-002-0018-5 PMid:12488967 Mori K, Nagao H and Yoshihara Y (1999). The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715. http://dx.doi.org/10.1126/science.286.5440.711 PMid:10531048 Neuhaus EM, Gisselmann G, Zhang W, Dooley R, et al. (2005). Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 8: 15-17. http://dx.doi.org/10.1038/nn1371 PMid:15592462 Novotny V, Basset Y, Miller SE, Weiblen GD, et al. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841-844. http://dx.doi.org/10.1038/416841a PMid:11976681 Pelletier J and Leal WS (2009). Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus. PLoS One 4: e6237. http://dx.doi.org/10.1371/journal.pone.0006237 PMid:19606229    PMCid:2707629 Pelosi P, Pisanelli AM, Baldaccini NE and Gagliardo A (1981). Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem. Senses 6: 77-85. http://dx.doi.org/10.1093/chemse/6.2.77 Pelosi P, Baldaccini NE and Pisanelli AM (1982). Identification of a specific olfactory receptor for 2-isobutyl-3- methoxypyrazine. Biochem. J. 201: 245-248. PMid:7082286    PMCid:1163633 Pelosi P, Zhou JJ, Ban L and Calvello M (2006). Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63: 1658-1676. http://dx.doi.org/10.1007/s00018-005-5607-0 PMid:16786224 Pesenti ME, Spinelli S, Bezirard V, Briand L, et al. (2008). Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J. Mol. Biol. 380: 158-169. http://dx.doi.org/10.1016/j.jmb.2008.04.048 PMid:18508083 Pesenti ME, Spinelli S, Bezirard V, Briand L, et al. (2009). Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J. Mol. Biol. 390: 981-990. http://dx.doi.org/10.1016/j.jmb.2009.05.067 PMid:19481550 Pophof B (2002). Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89: 515-518. http://dx.doi.org/10.1007/s00114-002-0364-5 PMid:12451455 Pophof B (2004). Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem. Senses 29: 117-125. http://dx.doi.org/10.1093/chemse/bjh012 PMid:14977808 Qiao H, Tuccori E, He X, Gazzano A, et al. (2009). Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 39: 414-419. http://dx.doi.org/10.1016/j.ibmb.2009.03.004 PMid:19328854 Sandler BH, Nikonova L, Leal WS and Clardy J (2000). Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 7: 143-151. http://dx.doi.org/10.1016/S1074-5521(00)00078-8 Sato K, Pellegrino M, Nakagawa T, Nakagawa T, et al. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002-1006. http://dx.doi.org/10.1038/nature06850 PMid:18408712 Silbering AF and Benton R (2010). Ionotropic and metabotropic mechanisms in chemoreception: “chance or design”? EMBO Rep. 11: 173-179. http://dx.doi.org/10.1038/embor.2010.8 PMid:20111052    PMCid:2838705 Strausfeld NJ and Hildebrand JG (1999). Olfactory systems: common design, uncommon origins? Curr. Opin. Neurobiol. 9: 634-639. http://dx.doi.org/10.1016/S0959-4388(99)00019-7 Tegoni M, Campanacci V and Cambillau C (2004). Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem. Sci. 29: 257-264. http://dx.doi.org/10.1016/j.tibs.2004.03.003 PMid:15130562 Thode AB, Kruse SW, Nix JC and Jones DN (2008). The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. J. Mol. Biol. 376: 1360-1376. http://dx.doi.org/10.1016/j.jmb.2007.12.063 PMid:18234222    PMCid:2293277 Uchida N, Takahashi YK, Tanifuji M and Mori K (2000). Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat. Neurosci. 3: 1035-1043. http://dx.doi.org/10.1038/79857 PMid:11017177 Van den Berg MJ and Ziegelberger G (1991). On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J. Insect Physiol. 37: 79-85. http://dx.doi.org/10.1016/0022-1910(91)90022-R Vogt RG (2005). Molecular Basis of Pheromone Detection in Insects. In: Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology (Gilbert L, Latro G and Gill S, eds.). Elsevier, London, 753-804. Vogt RG and Riddiford LM (1981). Pheromone binding and inactivation by moth antennae. Nature 293: 161-163. http://dx.doi.org/10.1038/293161a0 PMid:18074618 Vogt RG and Riddiford LM (1986). Pheromone Reception: A Kinetic Equilibrium. In: Mechanisms in Insect Olfaction (Payne T, Birch M and Kennedy C, eds.). Clarendon Press, Oxford, 201-208. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, et al. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736. http://dx.doi.org/10.1016/S0092-8674(00)80582-6 Vosshall LB, Wong AM and Axel R (2000). An olfactory sensory map in the fly brain. Cell 102: 147-159. http://dx.doi.org/10.1016/S0092-8674(00)00021-0 Wang P, Lyman RF, Shabalina SA, Mackay TFC, et al. (2007). Association of polymorphisms in odorant-binding protein genes with variation in olfactory response to benzaldehyde in Drosophila. Genetics 177: 1655-1665. http://dx.doi.org/10.1534/genetics.107.079731 PMid:17720903    PMCid:2147940 Wang P, Lyman RF, Mackay TF and Anholt RR (2010). Natural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster. Genetics 184: 759-767. http://dx.doi.org/10.1534/genetics.109.113340 PMid:20026676    PMCid:2845343 Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, et al. (2001). Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. U. S. A. 98: 9377-9380. http://dx.doi.org/10.1073/pnas.151103998 PMid:11481494    PMCid:55428 Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, et al. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452: 1007-1011. http://dx.doi.org/10.1038/nature06861 PMid:18408711 Wogulis M, Morgan T, Ishida Y, Leal WS, et al. (2006). The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem. Biophys. Res. Commun. 339: 157-164. http://dx.doi.org/10.1016/j.bbrc.2005.10.191 PMid:16300742 Wojtasek H and Leal WS (1999). Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 274: 30950-30956. http://dx.doi.org/10.1074/jbc.274.43.30950 PMid:10521490 Xu P, Atkinson R, Jones DN and Smith DP (2005). Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45: 193-200. http://dx.doi.org/10.1016/j.neuron.2004.12.031 PMid:15664171 Xu PX, Zwiebel LJ and Smith DP (2003). Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 12: 549-560. http://dx.doi.org/10.1046/j.1365-2583.2003.00440.x PMid:14986916 Xu W and Leal WS (2008). Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem. Biophys. Res. Commun. 372: 559-564. http://dx.doi.org/10.1016/j.bbrc.2008.05.087 PMid:18503757 Xu X, Xu W, Rayo J, Ishida Y, et al. (2010). NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection. Biochemistry 49: 1469-1476. http://dx.doi.org/10.1021/bi9020132 PMid:20088570    PMCid:2822879 Zhou JJ, Huang W, Zhang GA, Pickett JA, et al. (2004a). “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327: 117-129. http://dx.doi.org/10.1016/j.gene.2003.11.007 PMid:14960367 Zhou JJ, Zhang GA, Huang W, Birkett MA, et al. (2004b). Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett. 558: 23-26. http://dx.doi.org/10.1016/S0014-5793(03)01521-7 Zhou JJ, He XL, Pickett JA and Field LM (2008). Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol. Biol. 17: 147-163. http://dx.doi.org/10.1111/j.1365-2583.2007.00789.x PMid:18353104 Zhou JJ, Robertson G, He X, Dufour S, et al. (2009). Characterisation of Bombyx mori Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J. Mol. Biol. 389: 529-545. http://dx.doi.org/10.1016/j.jmb.2009.04.015 PMid:19371749 Zhou JJ, Field LM and He XL (2010a). Insect odorant-binding proteins: do they offer an alternative pest control strategy? Outlooks Pest Manag. 21: 31-34. http://dx.doi.org/10.1564/21feb08 Zhou JJ, Vieira FG, He XL, Smadja C, et al. (2010b). Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol. Biol. 19 (Suppl 2): 113-122. http://dx.doi.org/10.1111/j.1365-2583.2009.00919.x PMid:20482644 Zubkov S, Gronenborn AM, Byeon IJ and Mohanty S (2005). Structural consequences of the pH-induced conformational switch in A. polyphemus pheromone-binding protein: mechanisms of ligand release. J. Mol. Biol. 354: 1081-1090. http://dx.doi.org/10.1016/j.jmb.2005.10.015 PMid:16289114

Pages