Publications

Found 1 results
Filters: Author is H.W. Du  [Clear All Filters]
2016
X. H. Wang, Du, H. W., Guo, X. H., Wang, S. W., Zhou, R. B., Li, Y., Li, Z. B., Zhao, Y. S., and Zhu, Q. L., Rehmannia glutinosa oligosaccharide induces differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAntonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Charokopos N, et al (2008). Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thorac. Cardiovasc. Surg. 56: 77-82. http://dx.doi.org/10.1055/s-2007-989328 Borodovsky A, Salmasi V, Turcan S, Fabius AW, et al (2013). 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 4: 1737-1747. http://dx.doi.org/10.18632/oncotarget.1408 Chen XY, Wang RF, Liu B, et al (2015). An update on oligosaccharides and their esters from traditional chinese medicines: chemical structures and biological activities. Evid. Based Complement. Alternat. Med. 2015: 512675. http://dx.doi.org/10.1155/2015/512675 De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, et al (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr. Mol. Med. 12: 574-591. http://dx.doi.org/10.2174/156652412800619950 Deans RJ, Moseley AB, et al (2000). Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875-884. http://dx.doi.org/10.1016/S0301-472X(00)00482-3 Dey BR, Chung SS, Spitzer TR, Zheng H, et al (2010). Cardiac transplantation followed by dose-intensive melphalan and autologous stem-cell transplantation for light chain amyloidosis and heart failure. Transplantation 90: 905-911. http://dx.doi.org/10.1097/TP.0b013e3181f10edb Ge X, Bai C, Yang J, Lou G, et al (2013). Intratracheal transplantation of bone marrow-derived mesenchymal stem cells reduced airway inflammation and up-regulated CD4+CD25+ regulatory T cells in asthmatic mouse. Cell Biol. Int. 37: 675-686. http://dx.doi.org/10.1002/cbin.10084 Lai PK, To MH, Lau KM, Liu CL, et al (2012). Stachyose: One of the active fibroblast-proliferating components in the root of Rehmanniae Radix (dì huáng). J. Tradit. Complement. Med. 2: 227-234. http://dx.doi.org/10.1016/S2225-4110(16)30104-3 Makino S, Fukuda K, Miyoshi S, Konishi F, et al (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697-705. http://dx.doi.org/10.1172/JCI5298 Manferdini C, Maumus M, Gabusi E, Piacentini A, et al (2013). Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 65: 1271-1281. http://dx.doi.org/10.1002/art.37908 Nagaya N, Kitamura S, et al (2008). [Regenerative medicine for heart failure]. Nihon Rinsho 66: 978-983. Nagaya N, Kangawa K, Itoh T, Iwase T, et al (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112: 1128-1135. http://dx.doi.org/10.1161/CIRCULATIONAHA.104.500447 Park C, So HS, Kim SJ, Youn MJ, et al (2006). Samul extract protects against the H2O2-induced apoptosis of H9c2 cardiomyoblasts via activation of extracellular regulated kinases (Erk) 1/2. Am. J. Chin. Med. 34: 695-706. http://dx.doi.org/10.1142/S0192415X06004211 Park WH, Hong MY, Chung KH, Kim HM, et al (2005). Effects of traditional herbal medicine, Hwaotang, on atherosclerosis using the spontaneous familial hypercholesterolemia model, Kurosawa and Kusanagi-hypercholesterolemic rabbits and the venous thrombosis rats. Phytother. Res. 19: 846-853. http://dx.doi.org/10.1002/ptr.1700 Ramasamy R, Tong CK, Seow HF, Vidyadaran S, et al (2008). The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell. Immunol. 251: 131-136. http://dx.doi.org/10.1016/j.cellimm.2008.04.009 Richardson JD, Bertaso AG, Psaltis PJ, Frost L, et al (2013). Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J. Card. Fail. 19: 342-353. http://dx.doi.org/10.1016/j.cardfail.2013.03.011 Selem SM, Kaushal S, Hare JM, et al (2013). Stem cell therapy for pediatric dilated cardiomyopathy. Curr. Cardiol. Rep. 15: 369. http://dx.doi.org/10.1007/s11886-013-0369-z Tomita S, Li RK, Weisel RD, Mickle DA, et al (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 (Suppl): II247-II256. http://dx.doi.org/10.1161/01.CIR.100.suppl_2.II-247 Uccelli A, Moretta L, Pistoia V, et al (2006). Immunoregulatory function of mesenchymal stem cells. Eur. J. Immunol. 36: 2566-2573. http://dx.doi.org/10.1002/eji.200636416 Yokozawa T, Kim HY, Yamabe N, et al (2004). Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract. Am. J. Chin. Med. 32: 829-839. http://dx.doi.org/10.1142/S0192415X04002442 Yu HH, Kim YH, Jung SY, Shin MK, et al (2006a). Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells. Am. J. Chin. Med. 34: 1083-1093. http://dx.doi.org/10.1142/S0192415X06004545 Yu HH, Seo SJ, Kim YH, Lee HY, et al (2006b). Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals. J. Ethnopharmacol. 107: 383-388. http://dx.doi.org/10.1016/j.jep.2006.03.024 Yue WM, Liu W, Bi YW, He XP, et al (2008). Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 17: 785-793. http://dx.doi.org/10.1089/scd.2007.0243 Zhang Y, Wang Y, Wang L, Zhang Y, et al (2012). Effects of Rehmannia glutinosa oligosaccharide on human adipose-derived mesenchymal stem cells in vitro. Life Sci. 91: 1323-1327. http://dx.doi.org/10.1016/j.lfs.2012.10.015