Publications

Found 5 results
Filters: Author is Y. Ren  [Clear All Filters]
2016
Y. Ren, Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., Jiang, D., Ren, Y., Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., and Jiang, D., hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells, vol. 15, p. -, 2016.
Y. Ren, Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., Jiang, D., Ren, Y., Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., and Jiang, D., hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells, vol. 15, p. -, 2016.
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068