Publications

Found 11 results
Filters: Author is Z.H. Liu  [Clear All Filters]
2016
R. Liang, Yan, X. X., Lin, Y., Li, Q., Yuan, C. L., Liu, Z. H., Li, Y. Q., Liang, R., Yan, X. X., Lin, Y., Li, Q., Yuan, C. L., Liu, Z. H., and Li, Y. Q., Functional polymorphisms of the cyclooxygenase-2 gene and prognosis of hepatocellular carcinoma - a cohort study in Chinese people, vol. 15, p. -, 2016.
R. Liang, Yan, X. X., Lin, Y., Li, Q., Yuan, C. L., Liu, Z. H., Li, Y. Q., Liang, R., Yan, X. X., Lin, Y., Li, Q., Yuan, C. L., Liu, Z. H., and Li, Y. Q., Functional polymorphisms of the cyclooxygenase-2 gene and prognosis of hepatocellular carcinoma - a cohort study in Chinese people, vol. 15, p. -, 2016.
X. J. Sun, Zhou, L. Q., Tian, J. T., Liu, Z. H., Wu, B., Dong, Y. H., Yang, A. G., and Ma, W. M., Transcriptome survey of phototransduction and clock genes in marine bivalves, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by grants from the Basic Scientific Research Fund of YSFRI (#2060302201516054), the Zhejiang Provincial Top Key Discipline of Biological Engineering (#KF2015005), and the Independent Innovation Funds of Shandong Province (#2013CXC80202).REFERENCESFukushiro M, Takeuchi T, Takeuchi Y, Hur SP, et al (2011). Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot. PLoS One 6: e28643. http://dx.doi.org/10.1371/journal.pone.0028643 Golombek DA, Rosenstein RE, et al (2010). Physiology of circadian entrainment. Physiol. Rev. 90: 1063-1102. http://dx.doi.org/10.1152/physrev.00009.2009 Hardin PE, et al (2005). The circadian timekeeping system of Drosophila. Curr. Biol. 15: R714-R722. http://dx.doi.org/10.1016/j.cub.2005.08.019 Ikegami T, Takeuchi Y, Hur SP, Takemura A, et al (2014). Impacts of moonlight on fish reproduction. Mar. Genomics 14: 59-66. http://dx.doi.org/10.1016/j.margen.2013.11.007 Levitan DR, Fukami H, Jara J, Kline D, et al (2004). Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58: 308-323. http://dx.doi.org/10.1111/j.0014-3820.2004.tb01647.x Levy O, Appelbaum L, Leggat W, Gothlif Y, et al (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318: 467-470. http://dx.doi.org/10.1126/science.1145432 Li DY, Wu N, Tu JB, Hu YD, et al (2015a). Expression patterns of melatonin receptors in chicken ovarian follicles affected by monochromatic light. Genet. Mol. Res. 14: 10072-10080. http://dx.doi.org/10.4238/2015.August.21.14 Li J, Grant GR, Hogenesch JB, Hughes ME, et al (2015b). Considerations for RNA-seq analysis of circadian rhythms. Methods Enzymol. 551: 349-367. http://dx.doi.org/10.1016/bs.mie.2014.10.020 Lowrey PL, Takahashi JS, et al (2000). Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34: 533-562. http://dx.doi.org/10.1146/annurev.genet.34.1.533 Pairett AN, Serb JM, et al (2013). De novo assembly and characterization of two transcriptomes reveal multiple light-mediated functions in the scallop eye (Bivalvia: Pectinidae). PLoS One 8: e69852-e69852. http://dx.doi.org/10.1371/journal.pone.0069852 Panda S, Hogenesch JB, Kay SA, et al (2002). Circadian rhythms from flies to human. Nature 417: 329-335. http://dx.doi.org/10.1038/417329a Parsons GJ, Robinson SMC, Chandler RA, Davidson LA, et al (1992). Intra-annual and long-term patterns in the reproductive cycle of giant scallops Placopecten magellanicus (Bivalvia: Pectinidae) from Passamaquoddy Bay, New Brunswick, Canada. Mar. Ecol. Prog. Ser. 80: 203-214. http://dx.doi.org/10.3354/meps080203 Schrago CG, et al (2006). An empirical examination of the standard errors of maximum likelihood phylogenetic parameters under the molecular clock via bootstrapping. Genet. Mol. Res. 5: 233-241. Shi M, Zheng X, et al (2013). Interactions between the circadian clock and metabolism: there are good times and bad times. Acta Biochim. Biophys. Sin. (Shanghai) 45: 61-69. http://dx.doi.org/10.1093/abbs/gms110 Shoguchi E, Tanaka M, Shinzato C, Kawashima T, et al (2013). A genome-wide survey of photoreceptor and circadian genes in the coral, Acropora digitifera. Gene 515: 426-431. http://dx.doi.org/10.1016/j.gene.2012.12.038 Sugama N, Park JG, Park YJ, Takeuchi Y, et al (2008). Moonlight affects nocturnal Period2 transcript levels in the pineal gland of the reef fish Siganus guttatus. J. Pineal Res. 45: 133-141. http://dx.doi.org/10.1111/j.1600-079X.2008.00566.x Sun X, Yang A, Wu B, Zhou L, et al (2015). Characterization of the mantle transcriptome of yesso scallop (Patinopecten yessoensis): identification of genes potentially involved in biomineralization and pigmentation. PLoS One 10: e0122967. http://dx.doi.org/10.1371/journal.pone.0122967 Tessmar-Raible K, Raible F, Arboleda E, et al (2011). Another place, another timer: Marine species and the rhythms of life. BioEssays 33: 165-172. http://dx.doi.org/10.1002/bies.201000096 Vize PD, et al (2009). Transcriptome analysis of the circadian regulatory network in the coral Acropora millepora. Biol. Bull. 216: 131-137. http://dx.doi.org/10.1086/BBLv216n2p131 Vize PD, Embesi JA, Nickell M, Brown DP, et al (2005). Tight temporal consistency of coral mass spawning at the Flower Garden Banks, Gulf of Mexico, from 1997-2003. Gulf Mex. Sci. 23: 107-114. Wager-Smith K, Kay SA, et al (2000). Circadian rhythm genetics: from flies to mice to humans. Nat. Genet. 26: 23-27. http://dx.doi.org/10.1038/79134 Zhang G, Fang X, Guo X, Li L, et al (2012). The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: 49-54. http://dx.doi.org/10.1038/nature11413    
2012
Z. Yin, Kong, Q. R., Zhao, Z. P., Wu, M. L., Mu, Y. S., Hu, K., and Liu, Z. H., Position effect variegation and epigenetic modification of a transgene in a pig model, vol. 11, pp. 355-369, 2012.
Bailey PJ, Klos JM, Andersson E, Karlen M, et al. (2006). A global genomic transcriptional code associated with CNS-expressed genes. Exp. Cell Res. 312: 3108-3119. http://dx.doi.org/10.1016/j.yexcr.2006.06.017 PMid:16919269 Chen WY and Townes TM (2000). Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc. Natl. Acad. Sci. U. S. A. 97: 377-382. http://dx.doi.org/10.1073/pnas.97.1.377 Clark AJ, Bissinger P, Bullock DW, Damak S, et al. (1994). Chromosomal position effects and the modulation of transgene expression. Reprod. Fertil. Dev. 6: 589-598. http://dx.doi.org/10.1071/RD9940589 Cobellis G, Nicolaus G, Iovino M, Romito A, et al. (2005). Tagging genes with cassette-exchange sites. Nucleic Acids Res. 33: e44. http://dx.doi.org/10.1093/nar/gni045 PMid:15741177    PMCid:552971 Cranston A, Dong C, Howcroft J and Clark AJ (2001). Chromosomal sequences flanking an efficiently expressed transgene dramatically enhance its expression. Gene 269: 217-225. http://dx.doi.org/10.1016/S0378-1119(01)00459-0 Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, et al. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135: 284-294. http://dx.doi.org/10.1016/j.cell.2008.09.055 PMid:18957203    PMCid:2579750 Ebert A, Schotta G, Lein S, Kubicek S, et al. (2004). Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18: 2973-2983. http://dx.doi.org/10.1101/gad.323004 Ebert A, Lein S, Schotta G and Reuter G (2006). Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res. 14: 377-392. http://dx.doi.org/10.1007/s10577-006-1066-1 PMid:16821134 Esteller M and Herman JG (2002). Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. 196: 1-7. http://dx.doi.org/10.1002/path.1024 PMid:11748635 Eszterhas SK, Bouhassira EE, Martin DI and Fiering S (2002). Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol. Cell Biol. 22: 469-479. http://dx.doi.org/10.1128/MCB.22.2.469-479.2002 PMid:11756543    PMCid:139736 Grassi G, Maccaroni P, Meyer R, Kaiser H, et al. (2003). Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87. Carcinogenesis 24: 1625-1635. http://dx.doi.org/10.1093/carcin/bgg118 PMid:12869421 Gray PA, Fu H, Luo P, Zhao Q, et al. (2004). Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306: 2255-2257. http://dx.doi.org/10.1126/science.1104935 PMid:15618518 Gronbaek K, Hother C and Jones PA (2007). Epigenetic changes in cancer. APMIS 115: 1039-1059. http://dx.doi.org/10.1111/j.1600-0463.2007.apm_636.xml.x PMid:18042143 Grunau C, Clark SJ and Rosenthal A (2001). Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29: E65. http://dx.doi.org/10.1093/nar/29.13.e65 Houdebine LM (2002). The methods to generate transgenic animals and to control transgene expression. J. Biotechnol. 98: 145-160. http://dx.doi.org/10.1016/S0168-1656(02)00129-3 Irion S, Luche H, Gadue P, Fehling HJ, et al. (2007). Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat. Biotechnol. 25: 1477-1482. http://dx.doi.org/10.1038/nbt1362 PMid:18037879 Jenuwein T and Allis CD (2001). Translating the histone code. Science 293: 1074-1080. http://dx.doi.org/10.1126/science.1063127 PMid:11498575 Kaufman WL, Kocman I, Agrawal V and Rahn HP (2008). Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation. Nucleic Acids Res. 36: e111. http://dx.doi.org/10.1093/nar/gkn508 PMid:18682524    PMCid:2553579 Kong Q, Wu M, Zhu J and Bou G (2009a). Transgene copy number and integraton site analysis in transgenic pig. Prog. Biochem. Biophys. 36: 1617-1625. Kong Q, Wu M, Huan Y, Zhang L, et al. (2009b). Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One 4: e6679. http://dx.doi.org/10.1371/journal.pone.0006679 PMid:19688097    PMCid:2723931 Kouzarides T (2007). Chromatin modifications and their function. Cell 128: 693-705. http://dx.doi.org/10.1016/j.cell.2007.02.005 PMid:17320507 Lee JS, Shukla A, Schneider J, Swanson SK, et al. (2007). Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131: 1084-1096. http://dx.doi.org/10.1016/j.cell.2007.09.046 PMid:18083099 Li F, Huarte M, Zaratiegui M, Vaughn MW, et al. (2008). Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 135: 272-283. http://dx.doi.org/10.1016/j.cell.2008.08.036 PMid:18957202    PMCid:2614271 Liu ZH, Song J, Wang ZK, Tian JT, et al. (2008). Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer. Chin. Sci. Bull. 53: 1035-1039. http://dx.doi.org/10.1007/s11434-008-0168-x Loeb DD, Padgett RW, Hardies SC, Shehee WR, et al. (1986). The sequence of a large L1Md element reveals a tandemly repeated 5’ end and several features found in retrotransposons. Mol. Cell Biol. 6: 168-182. PMid:3023821    PMCid:367496 Mehta AK, Majumdar SS, Alam P, Gulati N, et al. (2009). Epigenetic regulation of cytomegalovirus major immediate-early promoter activity in transgenic mice. Gene 428: 20-24. http://dx.doi.org/10.1016/j.gene.2008.09.033 PMid:18976699 Miranda TB and Jones PA (2007). DNA methylation: the nuts and bolts of repression. J. Cell Physiol. 213: 384-390. http://dx.doi.org/10.1002/jcp.21224 PMid:17708532 Pillai MM, Venkataraman GM, Kosak S and Torok-Storb B (2008). Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR: segregating multiple-integrant founder lines and determining zygosity. Transgenic Res. 17: 749-754. http://dx.doi.org/10.1007/s11248-007-9161-4 PMid:18085422 Reik W (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425-432. http://dx.doi.org/10.1038/nature05918 PMid:17522676 Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, et al. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844-847. http://dx.doi.org/10.1126/science.1124000 PMid:16469925 Shyman S and Weaver S (1985). Chromosomal rearrangements associated with LINE elements in the mouse genome. Nucleic Acids Res. 13: 5085-5093. http://dx.doi.org/10.1093/nar/13.14.5085 PMid:2991852    PMCid:321851 Strathdee D, Ibbotson H and Grant SG (2006). Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS One 1: e4. http://dx.doi.org/10.1371/journal.pone.0000004 PMid:17183668    PMCid:1762389 Tshuikina M, Nilsson K and Oberg F (2008). Positive histone marks are associated with active transcription from a methylated ICSBP/IRF8 gene. Gene 410: 259-267. http://dx.doi.org/10.1016/j.gene.2007.12.013 PMid:18242011 Villuendas G, Gutierrez-Adan A, Jimenez A, Rojo C, et al. (2001). CMV-driven expression of green fluorescent protein (GFP) in male germ cells of transgenic mice and its effect on fertility. Int. J. Androl. 24: 300-305. http://dx.doi.org/10.1046/j.1365-2605.2001.00302.x PMid:11554988 Whitelaw E, Sutherland H, Kearns M, Morgan H, et al. (2001). Epigenetic effects on transgene expression. Methods Mol. Biol. 158: 351-368. PMid:11236667 Yang P, Wang J, Gong G, Sun X, et al. (2008). Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS One 3: e3453. http://dx.doi.org/10.1371/journal.pone.0003453 PMid:18941633    PMCid:2565487