Publications

Found 20 results
Filters: Author is F.V. Meirelles  [Clear All Filters]
2012
R. C. G. da Silva, Ferraz, J. B. S., Meirelles, F. V., Eler, J. P., Balieiro, J. C. C., Cucco, D. C., Mattos, E. C., Rezende, F. M., and Silva, S. L., Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle, vol. 11, pp. 3721-3728, 2012.
Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, et al. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol. 34: 105-116. http://dx.doi.org/10.1186/1297-9686-34-1-105 PMid:11929627 PMCid:2705418   Choudhary V, Kumar P, Bhattacharya TK, Bhushan B, et al. (2005). DNA polymorphism of leptin gene in Bos indicus and Bos taurus cattle. Genet. Mol. Biol. 28: 740-742. http://dx.doi.org/10.1590/S1415-47572005000500014   Clarke IJ and Henry BA (1999). Leptin and reproduction. Rev. Reprod. 4: 48-55. http://dx.doi.org/10.1530/ror.0.0040048 PMid:10051102   Eler JP, Ferraz JB, Balieiro JC, Mattos EC, et al. (2006). Genetic correlation between heifer pregnancy and scrotal circumference measured at 15 and 18 months of age in Nellore cattle. Genet. Mol. Res. 5: 569-580. PMid:17183470   Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. 4th edn. Longman, London. PMCid:1061158   Faria CU, Terra JP, Yokoo MJ, Magnabosco CU, et al. (2011). Interação genótipo-ambiente na análise genética do peso ao desmame de bovinos Nelore sob enfoque bayesiano. Acta. Sci. Anim. Sci. 33: 213-218.   Ferraz JB, Pinto LF, Meirelles FV, Eler JP, et al. (2009). Association of single nucleotide polymorphisms with carcass traits in Nellore cattle. Genet. Mol. Res. 8: 1360-1366. http://dx.doi.org/10.4238/vol8-4gmr650 PMid:19937580   Haegeman A, Van ZA and Peelman LJ (2000). New mutation in exon 2 of the bovine leptin gene. Anim. Genet. 31: 79. http://dx.doi.org/10.1111/j.1365-2052.2000.579-14.x PMid:10690378   Houseknecht KL, Baile CA, Matteri RL and Spurlock ME (1998). The biology of leptin: a review. J. Anim. Sci. 76: 1405-1420. PMid:9621947   Lagonigro R, Wiener P, Pilla F, Woolliams JA, et al. (2003). A new mutation in the coding region of the bovine leptin gene associated with feed intake. Anim. Genet. 34: 371-374. http://dx.doi.org/10.1046/j.1365-2052.2003.01028.x PMid:14510674   Laureano MMM, Boligon AA, Costa RB, Forni S, et al. (2011). Estimates of heritability and genetic trends for growth and reproduction traits in Nelore cattle. Arq. Bras. Med. Vet. Zootec. 66: 143-152. http://dx.doi.org/10.1590/S0102-09352011000100022   Liefers SC, Veerkamp RF, te Pas MF, Delavaud C, et al. (2004). A missense mutation in the bovine leptin receptor gene is associated with leptin concentrations during late pregnancy. Anim. Genet. 35: 138-141. http://dx.doi.org/10.1111/j.1365-2052.2004.01115.x PMid:15025576   Liefers SC, Veerkamp RF, te Pas MF, Delavaud C, et al. (2005). Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim. Genet. 36: 111-118. http://dx.doi.org/10.1111/j.1365-2052.2005.01246.x PMid:15771719   Mácajová M, Lamosova D and Zeman M (2004). Role of leptin in farm animals: a review. J. Vet. Med. A Physiol. Pathol. Clin. Med. 51: 157-166. http://dx.doi.org/10.1111/j.1439-0442.2004.00619.x PMid:15265171   Martins GA, Martins Filho R, Lima FAM and Lôbo RNB (2000). Influence of genetic and environment factors on the growing traits of animals from Nellore breed at Maranhão State. R. Bras. Zootec. Zootec. 29: 103-107. http://dx.doi.org/10.1590/S1516-35982000000100014   Meirelles FV, Rosa AJM, Lôbo RB, Garcia JM, et al. (1999). Is the american Zebu really Bos indicus? Genet. Mol. Biol. 22: 543-546. http://dx.doi.org/10.1590/S1415-47571999000400013   Nelson DL and Cox MM (2005). Lehningher Principles of Biochemistry. 6th edn. Prentice Hall, New York.   Nkrumah JD, Li C, Basarab JB, Guercio S, et al. (2004). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Can. J. Anim. Sci. 84: 211-219. http://dx.doi.org/10.4141/A03-033   Nkrumah JD, Li C, Yu J, Hansen C, et al. (2005). Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J. Anim. Sci. 83: 20-28. PMid:15583038   Olerup O and Zetterquist H (1992). HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practive including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225-235 http://dx.doi.org/10.1111/j.1399-0039.1992.tb01940.x PMid:1357775   Pedrosa VB, Eler JP, Ferraz JB, Silva JAV, et al. (2010). Parâmetros genéticos do peso adulto e características de desenvolvimento ponderal na raça Nelore. Rev. Bras. Saúde Prod. An. 11: 104-113.   Pereira E, Eler JP and Ferraz JBS (2000). Genetic correlation between scrotal circumference and some reproductive traits in Nellore cattle. Rev. Bras. Zootec. 29: 1676-1683. http://dx.doi.org/10.1590/S1516-35982000000600012   Pinto LF, Ferraz JB, Pedrosa VB, Eler JP, et al. (2011). Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genet. Mol. Res. 10: 2057-2064. http://dx.doi.org/10.4238/vol10-3gmr1263 PMid:21968622   Prado CS, Padua JT, Corrêa MPC, Ferraz JBS et al. (2004). Comparação de diferentes métodos de avaliação da área de olho de lombo e cobertura de gordura em bovinos de corte. Ciênc. Anim. Bras. 5: 141-149   SAS Institute Inc. (2004). SAS/STAT 9.1. User's Guide. SAS Publishing, Cary.   Schenkel FS, Miller SP, Ye X, Moore SS, et al. (2005). Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 83: 2009-2020. PMid:16100055   Silva SL, Leme PR, Putrino SM, Martello LS, et al. (2004). Prediction of backfat at slaughter, by ultrasound, in Nellore and Brangus Young bulls. Rev. Bras. Zootec. 33: 511-517. http://dx.doi.org/10.1590/S1516-35982004000200030   Souza FR, Mercadante ME, Fonseca LF, Ferreira LM, et al. (2010). Assessment of DGAT1 and LEP gene polymorphisms in three Nelore (Bos indicus) lines selected for growth and their relationship with growth and carcass traits. J. Anim. Sci. 88: 435-441. http://dx.doi.org/10.2527/jas.2009-2174 PMid:19820053   Tartaglia LA (1997). The leptin receptor. J. Biol. Chem. 272: 6093-6096. PMid:9102398   Van Melis MH, Oliveira HN, Eler JP, Ferraz JB, et al. (2010). Additive genetic relationship of longevity with fertility and production traits in Nellore cattle based on bivariate models. Genet. Mol. Res. 9: 176-187. http://dx.doi.org/10.4238/vol9-1gmr710 PMid:20198574   Yokoo MJ, Lobo RB, Araujo FR, Bezerra LA, et al. (2010). Genetic associations between carcass traits measured by real-time ultrasound and scrotal circumference and growth traits in Nelore cattle. J. Anim. Sci. 88: 52-58. http://dx.doi.org/10.2527/jas.2008-1028 PMid:19820065   Zhang Y, Proenca R, Maffei M, Barone M, et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. http://dx.doi.org/10.1038/372425a0 PMid:7984236
P. Ripamonte, Baccaglini, M., César, A. S. M., César, A. S. M., Figueiredo, L. G. G., Balieiro, J. C. C., Caetano, A. R., and Meirelles, F. V., Estimation of taurindicine hybridization of American Zebu cattle in Brazil, vol. 11, pp. 393-403, 2012.
Anderson S, de Bruijn MH, Coulson AR, Eperon IC, et al. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156: 683-717. http://dx.doi.org/10.1016/0022-2836(82)90137-1 Bradley DG and Cunningham EP (1999). Genetic Aspects of Domestication. In: The Genetics of Cattle (Fries R and Ruvinsky A, eds.). CABI Publishing, Wallingford, 15-31. Bradley DG, MacHugh DE, Cunningham P and Loftus RT (1996). Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. U. S. A. 93: 5131-5135. http://dx.doi.org/10.1073/pnas.93.10.5131 Bradley DG, Loftus RT, Cunningham EP and Machugh DE (1998). Genetic and domestic cattle origins. Evol. Anthr. 6: 79-86. http://dx.doi.org/10.1002/(SICI)1520-6505(1998)6:3<79::AID-EVAN2>3.0.CO;2-R Brezinsky L, Kemp SJ and Teale AJ (1993). ILSTS006: a polymorphic bovine microsatellite. Anim. Genet. 24: 73. Chakraborty R (1985). A note on the calculation of random RP and its sampling variance. Hum. Biol. 57: 713-717. PMid:4086024 Edwards CJ, Gaillard C, Bradley DG and MacHugh DE (2000). Y-specific microsatellite polymorphisms in a range of bovid species. Anim. Genet. 31: 127-130. http://dx.doi.org/10.1046/j.1365-2052.2000.00602.x PMid:10782212 Hall SJ and Bradley DG (1995). Conserving livestock breed biodiversity. Trends Ecol. Evol. 10: 267-270. http://dx.doi.org/10.1016/0169-5347(95)90005-5 Hanotte O, Okomo M, Verjee Y, Rege E, et al. (1997). A polymorphic Y chromosome microsatellite locus in cattle. Anim. Genet. 28: 318-319. Hanotte O, Tawah CL, Bradley DG, Okomo M, et al. (2000). Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-saharan African cattle breeds. Mol. Ecol. 9: 387- 396. http://dx.doi.org/10.1046/j.1365-294x.2000.00858.x PMid:10736042 Ibeagha-Awemu EM, Jann OC, Weimann C and Erhardt G (2004). Genetic diversity, introgression and relationships among West/Central African cattle breeds. Genet. Sel. Evol. 36: 673-690. http://dx.doi.org/10.1186/1297-9686-36-6-673 PMCid:2697200 Kaukinen J and Varvio SL (1993). Eight polymorphic bovine microsatellites. Anim. Genet. 24: 148. http://dx.doi.org/10.1111/j.1365-2052.1993.tb00274.x Kieffer NM and Cartwright TC (1968). Sex chromosome polymorphism in domestic cattle. J. Hered. 59: 34-36. PMid:5656913 Liu WS, Beattie CW and Ponce de Leon FA (2003). Bovine Y chromosome microsatellite polymorphisms. Cytogenet. Genome Res. 102: 53-58. http://dx.doi.org/10.1159/000075725 PMid:14970679 Loftus RT, MacHugh DE, Bradley DG, Sharp PM, et al. (1994a). Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. U. S. A. 91: 2757-2761. http://dx.doi.org/10.1073/pnas.91.7.2757 Loftus RT, MacHugh DE, Ngere LO, Balain DS, et al. (1994b). Mitochondrial genetic variation in European, African and Indian cattle populations. Anim. Genet. 25: 265-271. http://dx.doi.org/10.1111/j.1365-2052.1994.tb00203.x Loftus RT, Ertugrul O, Harba AH, El-Barody MA, et al. (1999). A microsatellite survey of cattle from a centre of origin: the Near East. Mol. Ecol. 8: 2015-2022. http://dx.doi.org/10.1046/j.1365-294x.1999.00805.x PMid:10632853 Macaya G, Cortadas J and Bernardi G (1978). An analysis of the bovine genome by density-gradient centrifugation. Preparation of the dG+dC-rich DNA components. Eur. J. Biochem. 84: 179-188. http://dx.doi.org/10.1111/j.1432-1033.1978.tb12155.x PMid:565711 MacHugh DE, Shriver MD, Loftus RT, Cunningham P, et al. (1997). Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146: 1071-1086. PMid:9215909    PMCid:1208036 Magnabosco CDU (1997). Estimativas de Parâmetros Genéticos em Características de Crescimento de Animais da Raça Nelore Usando os Métodos de Máxima Verossimilhança Restrita e Amostragem Gibbs. Doctoral thesis, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto. Mannen H, Kohno M, Nagata Y, Tsuji S, et al. (2004). Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenet. Evol. 32: 539-544. http://dx.doi.org/10.1016/j.ympev.2004.01.010 PMid:15223036 Manwell C and Baker CM (1980). Chemical classification of cattle. 2. Phylogenetic tree and specific status of the Zebu. Anim. Blood Groups Biochem. Genet. 11: 151-162. http://dx.doi.org/10.1111/j.1365-2052.1980.tb01504.x Meirelles FV, Rosa AJM, Lôbo RB and Garcia JM (1999). Is the American Zebu is really Bos indicus? Genet. Mol. Biol. 22: 543-547. http://dx.doi.org/10.1590/S1415-47571999000400013 Nei M (1987). Molecular Evolutionary Genetics. Columbia University Press, New York. Nelder JA and Wedderburn RWM (1972). Generalized linear models. J. R. Stat. Soc. Ser. A. Gen. 135: 370-384. http://dx.doi.org/10.2307/2344614 Nijman IJ and Lenstra JA (2001). Mutation and recombination in cattle satellite DNA: a feedback model for the evolution of satellite DNA repeats. J. Mol. Evol. 52: 361-371. PMid:11343132 Nijman IJ, Bradley DG, Hanotte O, Otsen M, et al. (1999). Satellite DNA polymorphisms and AFLP correlate with Bos indicus-taurus hybridization. Anim. Genet. 30: 265-273. http://dx.doi.org/10.1046/j.1365-2052.1999.00475.x PMid:10467701 Raymond M and Rousset (1995). GENEPOP (version 3.1b). A population genetics software for exact tests and ecumenosm. J. Hered. 86: 248-249. Roslin Institute (2001). Standard DNA from Taurine Breeds. Available at [http://www.projects.roslin.ac.uk]. Accessed September 14, 2002. Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. SAS Institute (2004). User’s Guide: Statistics. SAS Institute Inc., Cary. Steffen P, Eggen A, Dietz AB, Womack JE, et al. (1993). Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 24: 121-124. http://dx.doi.org/10.1111/j.1365-2052.1993.tb00252.x Stephan W (1986). Recombination and the evolution of satellite DNA. Genet. Res. 47: 167-174. http://dx.doi.org/10.1017/S0016672300023089 Streeck RE (1982). A multicopy insertion sequence in the bovine genome with structural homology to the long terminal repeats of retroviruses. Nature 298: 767-769. http://dx.doi.org/10.1038/298767a0 PMid:6287272 Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, et al. (1994). A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm. Genome 5: 288-297. http://dx.doi.org/10.1007/BF00389543 PMid:7545949
2011
L. F. B. Pinto, Ferraz, J. B. S., Pedrosa, V. B., Eler, J. P., Meirelles, F. V., Bonin, M. N., Rezende, F. M., Carvalho, M. E., Cucco, D. C., and Silva, R. C. G., Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle, vol. 10, pp. 2057-2064, 2011.
AMSA (1995). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Fresh Meat. American Meat Science Association, Chicago. Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, et al. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol. 34: 105-116. http://dx.doi.org/10.1186/1297-9686-34-1-105 PMCid:2705418 Chambaz A, Scheeder MRL, Kreuzer M and Dufey PA (2003). Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 63: 491-500. http://dx.doi.org/10.1016/S0309-1740(02)00109-2 Ferraz JB, Pinto LF, Meirelles FV, Eler JP, et al. (2009). Association of single nucleotide polymorphisms with carcass traits in Nellore cattle. Genet. Mol. Res. 8: 1360-1366. http://dx.doi.org/10.4238/vol8-4gmr650 PMid:19937580 Huff-Lonergan E and Lonergan SM (2005). Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci. 71: 194-204. http://dx.doi.org/10.1016/j.meatsci.2005.04.022 PMid:22064064 Liefers SC, Veerkamp RF, Te Pas MF, Delavaud C, et al. (2005). Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim. Genet. 36: 111-118. http://dx.doi.org/10.1111/j.1365-2052.2005.01246.x PMid:15771719 Mancini RA and Hunt MC (2005). Current research in meat color. Meat Sci. 71: 100-121. http://dx.doi.org/10.1016/j.meatsci.2005.03.003 PMid:22064056 Pérez-Enciso M and Misztal I (2004). Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20: 2792-2798. http://dx.doi.org/10.1093/bioinformatics/bth331 PMid:15166025 Pinto LF, Ferraz JB, Meirelles FV, Eler JP, et al. (2010). Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genet. Mol. Res. 9: 1431-1442. http://dx.doi.org/10.4238/vol9-3gmr881 PMid:20662159 Reardon W, Mullen AM, Sweeney T and Hamill RM (2010). Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine m. longissimus and m. semimembranosus. Meat Sci. 86: 270-275. http://dx.doi.org/10.1016/j.meatsci.2010.04.013 PMid:20510534 SAS (2004). SAS/STAT User’s Guide: Version 9.1. SAS Institute, Cary. Viljoen HF, De Kock HL and Webb EC (2002). Consumer acceptability of dark, firm and dry (DFD) and normal pH beef steaks. Meat Sci. 61: 181-185. http://dx.doi.org/10.1016/S0309-1740(01)00183-8 White SN, Casas E, Wheeler TL, Shackelford SD, et al. (2005). A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83: 2001-2008. PMid:16100054
P. S. Monzani, Bressan, F. F., Mesquita, L. G., Sangalli, J. R., and Meirelles, F. V., β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing mammary glands, vol. 10, pp. 604-614, 2011.
Ahn JY, Aoki N, Adachi T, Mizuno Y, et al. (1995). Isolation and culture of bovine mammary epithelial cells and establishment of gene transfection conditions in the cells. Biosci. Biotechnol. Biochem. 59: 59-64. doi:10.1271/bbb.59.59 PMid:7765977 Blum JL, Zeigler ME and Wicha MS (1989). Regulation of mammary differentiation by the extracellular matrix. Environ. Health Perspect. 80: 71-83. doi:10.1289/ehp.898071 PMid:2647486    PMCid:1567626 Chen LH and Bissell MJ (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell. Regul. 1: 45-54. PMid:2519617    PMCid:361424 Chotteau-Lelievre A, Montesano R, Soriano J, Soulie P, et al. (2003). PEA3 transcription factors are expressed in tissues undergoing branching morphogenesis and promote formation of duct-like structures by mammary epithelial cells in vitro. Dev. Biol. 259: 241-257. doi:10.1016/S0012-1606(03)00182-9 Feuermann Y, Mabjeesh SJ and Shamay A (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87: 2941-2946. doi:10.3168/jds.S0022-0302(04)73425-6 Gibson CA, Vega JR, Baumrucker CR, Oakley CS, et al. (1991). Establishment and characterization of bovine mammary epithelial cell lines. In Vitro Cell. Dev. Biol. 27A: 585-594. doi:10.1007/BF02631290 Huynh H and Pollak M (1995). HH2A, an immortalized bovine mammary epithelial cell line, expresses the gene encoding mammary derived growth inhibitor (MDGI). In Vitro Cell. Dev. Biol. Anim. 31: 25-29. doi:10.1007/BF02631334 Huynh HT, Robitaille G and Turner JD (1991). Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp. Cell. Res. 197: 191-199. doi:10.1016/0014-4827(91)90422-Q Joshi M, Keith PH, Haisch C and Verbanac K (2008). Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice. Biotechniques 45: 247-258. doi:10.2144/000112913 PMid:18778249 Larson BL (1976). Comparative production of beta-lactoglobulin and orotic acid with lactose in bovine mammary cell cultures: effects of cell density and constituent inhibition. J. Dairy Sci. 59: 1881-1889. doi:10.3168/jds.S0022-0302(76)84457-8 Lee EY, Lee WH, Kaetzel CS, Parry G, et al. (1985). Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. U. S. A. 82: 1419-1423. doi:10.1073/pnas.82.5.1419 Li ML, Aggeler J, Farson DA, Hatier C, et al. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 84: 136-140. doi:10.1073/pnas.84.1.136 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. MacKenzie DD, Forsyth IA, Brooker BE and Turvey A (1982). Culture of bovine mammary epithelial cells on collagen gels. Tissue Cell 14: 231-241. doi:10.1016/0040-8166(82)90021-0 MacKenzie DD, Brooker BE and Forsyth I (1985). Ultrastructural features of bovine mammary epithelial cells grown on collagen gels. Tissue Cell 17: 39-51. doi:10.1016/0040-8166(85)90014-X McGrath MF (1987). A novel system for mammary epithelial cell culture. J. Dairy Sci. 70: 1967-1980. doi:10.3168/jds.S0022-0302(87)80239-4 Mehta NM, Ganguly N, Ganguly R and Banerjee MR (1980). Hormonal modulation of the casein gene expression in a mammogenesis-lactogenesis culture model of the whole mammary gland of the mouse. J. Biol. Chem. 255: 4430-4434. PMid:6989812 Rose MT and McConochie H (2006). The long road to a representative in vitro model of bovine lactation. JIFS 3: 67-72. Rose MT, Aso H, Yonekura S, Komatsu T, et al. (2002). In vitro differentiation of a cloned bovine mammary epithelial cell. J. Dairy Res. 69: 345-355. doi:10.1017/S0022029902005551 PMid:12369405 Schmidhauser C, Bissell MJ, Myers CA and Casperson GF (1990). Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5’ sequences in stably transfected mouse mammary cells. Proc. Natl. Acad. Sci. U. S. A. 87: 9118-9122. doi:10.1073/pnas.87.23.9118 Suard YM, Haeuptle MT, Farinon E and Kraehenbuhl JP (1983). Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell. Biol. 96: 1435-1442. doi:10.1083/jcb.96.5.1435 PMid:6841453    PMCid:2112649 Yang J, Zhao B, Baracos VE and Kennelly JJ (2005). Effects of bovine somatotropin on beta-casein mRNA levels in mammary tissue of lactating cows. J. Dairy Sci. 88: 2806-2812. doi:10.3168/jds.S0022-0302(05)72960-X Zavizion B, van Duffelen M, Schaeffer W and Politis I (1996). Establishment and characterization of a bovine mammary epithelial cell line with unique properties. In Vitro Cell. Dev. Biol. Anim. 32: 138-148. doi:10.1007/BF02723679 Zhao K, Liu HY, Zhou MM and Liu JX (2010). Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis. Cell. Biol. Int. 34: 717-721. doi:10.1042/CBI20100023 PMid:20214659
2010
L. F. B. Pinto, Ferraz, J. B. S., Meirelles, F. V., Eler, J. P., Rezende, F. M., Carvalho, M. E., Almeida, H. B., and Silva, R. C. G., Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle, vol. 9, pp. 1431-1442, 2010.
Barendse W, Harrison BE, Hawken RJ, Ferguson DM, et al. (2007). Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics 176: 2601-2610. http://dx.doi.org/10.1534/genetics.107.074328 PMid:17603104 PMCid:1950658   Bonilha SFM, Tedeschi LO, Pachker IU, Razook AG, et al. (2008). Evaluation of carcass characteristics of Bos indicus and tropically adapted Bos taurus breeds selected for postweaning weight. J. Anim. Sci. 50: 841-851.   Casas E, White SN, Riley DG, Smith TP, et al. (2005). Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 83: 13-19. PMid:15583037   Casas E, White SN, Wheeler TL, Shackelford SD, et al. (2006). Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84: 520-525. PMid:16478943   Cheong HS, Yoon DH, Park BL, Kim LH, et al. (2008). A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genet. 9: 33. http://dx.doi.org/10.1186/1471-2156-9-33 PMid:18423040 PMCid:2386817   Corva P, Soria L, Schor A, Villarreal E, et al. (2007). Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genet. Mol. Biol. 30: 1064-1069. http://dx.doi.org/10.1590/S1415-47572007000600006   Garcia MD, Michal JJ, Gaskins CT, Reeves JJ, et al. (2006). Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Anim. Genet. 37: 304-305. http://dx.doi.org/10.1111/j.1365-2052.2006.01443.x PMid:16734705   Koohmaraie M (1996). Biochemical factors regulating the toughening and tenderization process of meat. Meat Sci. 43: 193-201. http://dx.doi.org/10.1016/0309-1740(96)00065-4   Morris CA, Cullen NG, Hickey SM, Dobbie PM, et al. (2006). Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey x Limousin, Angus and Hereford-cross cattle. Anim. Genet. 37: 411-414. http://dx.doi.org/10.1111/j.1365-2052.2006.01483.x PMid:16879360   Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085. PMid:12542147   Page BT, Casas E, Quaas RL, Thallman RM, et al. (2004). Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci. 82: 3474-3481. PMid:15537766   Pérez-Enciso M and Misztal I (2004). Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20: 2792-2798. http://dx.doi.org/10.1093/bioinformatics/bth331 PMid:15166025   SAS (2004). SAS/STATUser's Guide: version 9.1. SAS Institute, North Caroline, 5136.   Schenkel FS, Miller SP, Jiang Z, Mandell IB, et al. (2006). Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84: 291-299. PMid:16424255   Smith TPL, Casas E, Rexroad CE III, Kappes SM, et al. (2000). Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J. Anim. Sci. 78: 2589-2594. PMid:11048924   White SN, Casas E, Wheeler TL, Shackelford SD, et al. (2005). A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83: 2001-2008. PMid:16100054
A. S. M. César, César, A. S. M., Silveira, A. C. P., Freitas, P. F. A., Guimarães, E. C., Batista, D. F. A., Torido, L. C., Meirelles, F. V., and Antunes, R. C., Influence of Chinese breeds on pork quality of commercial pig lines, vol. 9, pp. 727-733, 2010.
Antunes RC, Pita FVC, Franco MM and Goulart Filho ELR (2002). The racial composition of the maternal line and the Hal genotype influence on the meat quality of the pigs slaughtered from 90 to 110 kg of weight live. Ars Vet. 18: 33-42.   AOAC (1996). Official Methods of Analysis of AOAC International. 16th edn. Vol. 2. AOAC Int., Arlington.   Associação Brasileira de Indústrias Processadoras e Exportadoras de Carne Suína (ABIPECS) (2007). Associação Brasileira de Indústrias Processadoras e Exportadoras de Carne Suína. Available at [http://www.Abipecs.com.br]. Accessed February 22, 2009.   Ayres M, Ayres M Jr, Ayres DL and Santos AS (2007). BioEstat 5.0. Aplicações Estatísticas nas Áreas das Ciências Bio- Médicas. Sociedade Civil de Mamirauá, Belém.   Berg E (Editor) (2000). Pork Composition and Quality Assessment Procedures. National Pork Producers Council and American Meat Science Association, Des Moines.   Brewer MS, Jensen J, Sosnicki AA, Fields B, et al. (2002). The effect of pig genetics on palatability, color and physical characteristics of fresh pork loin chops. Meat Sci. 61: 249-256. http://dx.doi.org/10.1016/S0309-1740(01)00190-5   Claeys E, De Smet S, Demeyer D, Geers R, et al. (2001). Effect of rate of pH decline on muscle enzyme activities in two pig lines. Meat Sci. 57: 257-263. http://dx.doi.org/10.1016/S0309-1740(00)00100-5   den Hertog-Meischke MJ, van Laack RJ and Smulders FJ (1997). The water-holding capacity of fresh meat. Vet. Q. 19: 175-181. http://dx.doi.org/10.1080/01652176.1997.9694767 PMid:9413116   Edwards DB, Bates RO and Osburn WN (2003). Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 81: 1895-1899. PMid:12926770   Fang M and Andersson L (2006). Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc. Biol. Sci. 273: 1803-1810. http://dx.doi.org/10.1098/rspb.2006.3514 PMid:16790414 PMCid:1634785   Giuffra E, Kijas JM, Amarger V, Carlborg O, et al. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154: 1785-1791. PMid:10747069 PMCid:1461048   Hsieh CY, Rothschild MF and Christian LL (1991). Reproduction, growth and carcass performance of Chinese pigs and their crosses. Iowa State University Swine Research Reports, Ames, 23-26. ASL-855.   Lawrie RA (2005). Ciência da Carne. 6th edn. Artmed, Porto Alegre.   Legault C, Sellier P, Caritez JC, Dando P, et al. (1985). L'expérimentation sur le porc chinois en France. II: Performances de production en croisement avec les races européennes [Experiments with Chinese pigs in France. II. Productive performance in crosses in European breeds]. Genet. Sel. Evol. 17: 133-152. http://dx.doi.org/10.1186/1297-9686-17-1-133 PMid:22879190 PMCid:2713914   Leroy P, Monin O, Elsen JM, Cortiez JC, et al. (1996). Effect of the RN Gene on Technological and Sensory Meat Quality in Linebred Pigs with Hampshire as Terminal Sire. In: 47th Annual Meeting of the European Association for Animal Production, 25-29 August 1996, Lillehammer.   Monin G and Ouali A (1991). Muscle Differentiation and Meat Quality. In: Developments in Meat Science (Ralston L, ed.). Elsevier Applied Science, London. 89-138.   Newcom DW, Stalder KJ, Baas TJ, Goodwin RN, et al. (2004). Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J. Anim. Sci. 82: 2264-2268. PMid:15318723   Nguyen NH, McPhee CP and Trout GR (2006). Responses in carcass lean pH at 24 hours post-mortem in lines of Large White pigs selected for growth rate on a fixed ration over a set time. Livest. Sci. 100: 84-90. http://dx.doi.org/10.1016/j.livprodsci.2005.07.005   Nii M, Hayashi T, Mikawa S, Tani F, et al. (2005). Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar x Large White intercross. J. Anim. Sci. 83: 308-315. PMid:15644501   Okumura N, Kurosawa Y, Kobayashi E, Watanobe T, et al. (2001). Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in wild boars and several breeds of domesticated pigs. Anim. Genet. 32: 139-147. http://dx.doi.org/10.1046/j.1365-2052.2001.00757.x PMid:11493262   Porter V (1993). Pigs: A Handbook to the Breeds of the World. Cornell University, New York.   Schäfer A, Rosenvold K, Purslow PP, Andersen HJ, et al. (2002). Physiological and structural events post mortem of importance for drip loss in pork. Meat Sci. 61: 355-366. http://dx.doi.org/10.1016/S0309-1740(01)00205-4   Tan FJ, Morgan MT, Ludas LI, Forrest JC, et al. (2000). Assessment of fresh pork color with color machine vision. J. Anim. Sci. 78: 3078-3085. PMid:11132822   Watanabe T, Hayashi Y, Kimura J, Yasuda Y, et al. (1986). Pig mitochondrial DNA: polymorphism, restriction map orientation, and sequence data. Biochem. Genet. 24: 385-396. http://dx.doi.org/10.1007/BF00499094 PMid:3017295   Young LD (1992). Effects of Duroc, Meishan, Fengjing, and Minzhu boars on carcass traits of first-cross barrows. J. Anim. Sci. 70: 2030-2037. PMid:1644675   Young LD (1998). Survival, body weights, feed efficiency, and carcass traits of 7/8 White Composite and 1/8 Duroc, 1/8 Meishan, 1/8 Fengjing, or 1/8 Minzhu pigs. J. Anim. Sci. 76: 1550-1558. PMid:9655574   Zhang S, Knight TJ, Stalder KJ, Goodwin RN, et al. (2007). Effects of breed, sex, and halothane genotype on fatty acid composition of pork longissimus muscle. J. Anim. Sci. 85: 583-591. http://dx.doi.org/10.2527/jas.2006-239 PMid:17060410
D. B. Campos, Papa, P. C., Marques, Jr., J. E. B., Garbelotti, F., Fátima, L. A., Artoni, L. P., Birgel, Jr., E. H., Meirelles, F. V., Buratini, Jr., J., Leiser, R., and Pfarrer, C., Somatic cell nuclear transfer is associated with altered expression of angiogenic factor systems in bovine placentomes at term, vol. 9, pp. 309-323, 2010.
Campbell KH, Alberio R, Choi I, Fisher P, et al. (2005). Cloning: eight years after Dolly. Reprod. Domest. Anim. 40: 256-268. http://dx.doi.org/10.1111/j.1439-0531.2005.00591.x PMid:16008756   Carmeliet P and Storkebaum E (2002). Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin. Cell Dev. Biol. 13: 39-53. http://dx.doi.org/10.1006/scdb.2001.0290 PMid:11969370   Cebe-Suarez S, Zehnder-Fjallman A and Ballmer-Hofer K (2006). The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol. Life Sci. 63: 601-615. http://dx.doi.org/10.1007/s00018-005-5426-3 PMid:16465447 PMCid:2773843   Cezar GG, Bartolomei MS, Forsberg EJ, First NL, et al. (2003). Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod. 68: 1009-1014. http://dx.doi.org/10.1095/biolreprod.102.010181 PMid:12604655   Cheung CY (1997). Vascular endothelial growth factor: possible role in fetal development and placental function. J. Soc. Gynecol. Investig. 4: 169-177. http://dx.doi.org/10.1016/S1071-5576(97)00025-7   Clauss M, Weich H, Breier G, Knies U, et al. (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271: 17629-17634. http://dx.doi.org/10.1074/jbc.271.30.17629 PMid:8663424   Constant F, Guillomot M, Heyman Y, Vignon X, et al. (2006). Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol. Reprod. 75: 122-130. http://dx.doi.org/10.1095/biolreprod.106.051581 PMid:16571872   De Sousa PA, King T, Harkness L, Young LE, et al. (2001). Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol. Reprod. 65: 23-30. http://dx.doi.org/10.1095/biolreprod65.1.23 PMid:11420219   Dindot SV, Farin PW, Farin CE, Romano J, et al. (2004). Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol. Reprod. 71: 470-478. http://dx.doi.org/10.1095/biolreprod.103.025775 PMid:15044262   Everts RE, Chavatte-Palmer P, Razzak A, Hue I, et al. (2008). Aberrant gene expression patterns in placentomes are associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer. Physiol. Genomics 33: 65-77. http://dx.doi.org/10.1152/physiolgenomics.00223.2007 PMid:18089771   Fulka J Jr and Fulka H (2007). Somatic cell nuclear transfer (SCNT) in mammals: the cytoplast and its reprogramming activities. Adv. Exp. Med. Biol. 591: 93-102. http://dx.doi.org/10.1007/978-0-387-37754-4_7 PMid:17176557   Gabler C, Plath-Gabler A, Killian GJ, Berisha B, et al. (2004). Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reprod. Domest. Anim. 39: 321-327. http://dx.doi.org/10.1111/j.1439-0531.2004.00517.x PMid:15367264   Gospodarowicz D (1991). Biological activities of fibroblast growth factors. Ann. N. Y. Acad. Sci. 638: 1-8. http://dx.doi.org/10.1111/j.1749-6632.1991.tb49012.x PMid:1785796   Guerra DM, Giometti IC, Price CA, Andrade PB, et al. (2008). Expression of fibroblast growth factor receptors during development and regression of the bovine corpus luteum. Reprod. Fertil. Dev. 20: 659-664. http://dx.doi.org/10.1071/RD07114 PMid:18671913   Hall VJ, Ruddock NT and French AJ (2005). Expression profiling of genes crucial for placental and preimplantation development in bovine in vivo, in vitro, and nuclear transfer blastocysts. Mol. Reprod. Dev. 72: 16-24. http://dx.doi.org/10.1002/mrd.20337 PMid:15898073   Heyman Y, Chavatte-Palmer P, LeBourhis D, Camous S, et al. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66: 6-13. http://dx.doi.org/10.1095/biolreprod66.1.6 PMid:11751257   Hill JR, Burghardt RC, Jones K, Long CR, et al. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63: 1787-1794. http://dx.doi.org/10.1095/biolreprod63.6.1787 PMid:11090450   Hoffert-Goeres KA, Batchelder CA, Bertolini M, Moyer AL, et al. (2007). Angiogenesis in day-30 bovine pregnancies derived from nuclear transfer. Cloning Stem Cells 9: 595-607. http://dx.doi.org/10.1089/clo.2007.0019 PMid:18154519   Humpherys D, Eggan K, Akutsu H, Friedman A, et al. (2002). Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. U. S. A. 99: 12889-12894. http://dx.doi.org/10.1073/pnas.192433399 PMid:12235366 PMCid:130555   Inoue K, Kohda T, Lee J, Ogonuki N, et al. (2002). Faithful expression of imprinted genes in cloned mice. Science 295: 297. http://dx.doi.org/10.1126/science.295.5553.297 PMid:11786635   James JL, Stone PR and Chamley LW (2006). The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum. Reprod. Update 12: 137-144. http://dx.doi.org/10.1093/humupd/dmi043 PMid:16234296   Klint P and Claesson-Welsh L (1999). Signal transduction by fibroblast growth factor receptors. Front Biosci. 4: D165-D177. http://dx.doi.org/10.2741/Klint PMid:9989949   Kohda T, Inoue K, Ogonuki N, Miki H, et al. (2005). Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biol. Reprod. 73: 1302-1311. http://dx.doi.org/10.1095/biolreprod.105.044958 PMid:16120825   Loi P, Clinton M, Vackova I, Fulka J Jr, et al. (2006). Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 65: 1110-1121. http://dx.doi.org/10.1016/j.theriogenology.2005.07.016 PMid:16154189   Malassine A, Frendo JL and Evain-Brion D (2003). A comparison of placental development and endocrine functions between the human and mouse model. Hum. Reprod. Update 9: 531-539. http://dx.doi.org/10.1093/humupd/dmg043 PMid:14714590   Miglino MA, Pereira FT, Visintin JA, Garcia JM, et al. (2007). Placentation in cloned cattle: structure and microvascular architecture. Theriogenology 68: 604-617. http://dx.doi.org/10.1016/j.theriogenology.2007.04.060 PMid:17568663   Ohgane J, Wakayama T, Kogo Y, Senda S, et al. (2001). DNA methylation variation in cloned mice. Genesis 30: 45-50. http://dx.doi.org/10.1002/gene.1031 PMid:11416862   Otrock ZK, Makarem JA and Shamseddine AI (2007). Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol. Dis. 38: 258-268. http://dx.doi.org/10.1016/j.bcmd.2006.12.003 PMid:17344076   Pfarrer C, Weise S, Berisha B, Schams D, et al. (2006a). Fibroblast growth factor (FGF)-1, FGF2, FGF7 and FGF receptors are uniformly expressed in trophoblast giant cells during restricted trophoblast invasion in cows. Placenta 27: 758- 770. http://dx.doi.org/10.1016/j.placenta.2005.06.007 PMid:16129484   Pfarrer CD, Ruziwa SD, Winther H, Callesen H, et al. (2006b). Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term. Placenta 27: 889- 898. http://dx.doi.org/10.1016/j.placenta.2005.09.004 PMid:16263165   Reynolds LP and Redmer DA (1995). Utero-placental vascular development and placental function. J. Anim. Sci. 73: 1839-1851. PMid:7545661   Reynolds LP and Redmer DA (2001). Angiogenesis in the placenta. Biol. Reprod. 64: 1033-1040. http://dx.doi.org/10.1095/biolreprod64.4.1033 PMid:11259247   Roussel Y, Harris A, Lee MH and Wilks M (2007). Novel methods of quantitative real-time PCR data analysis in a murine Helicobacter pylori vaccine model. Vaccine 25: 2919-2929. http://dx.doi.org/10.1016/j.vaccine.2006.07.013 PMid:16905224   Schlessinger J, Lax I and Lemmon M (1995). Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83: 357-360. http://dx.doi.org/10.1016/0092-8674(95)90112-4   Stavri GT, Zachary IC, Baskerville PA, Martin JF, et al. (1995). Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 92: 11-14. http://dx.doi.org/10.1161/01.CIR.92.1.11 PMid:7788904   Wheeler T, Elcock CL and Anthony FW (1995). Angiogenesis and the placental environment. Placenta 16: 289-296. http://dx.doi.org/10.1016/0143-4004(95)90115-9   Winther H, Ahmed A and Dantzer V (1999). Immunohistochemical localization of vascular endothelial growth factor (VEGF) and its two specific receptors, Flt-1 and KDR, in the porcine placenta and non-pregnant uterus. Placenta 20: 35-43. http://dx.doi.org/10.1053/plac.1998.0350 PMid:9950143   Yamashita H, Kamada D, Shirasuna K, Matsui M, et al. (2008). Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 75: 1449-1456. http://dx.doi.org/10.1002/mrd.20878 PMid:18213648   Yamazaki W, Ferreira CR, Meo SC, Leal CL, et al. (2005). Use of strontium in the activation of bovine oocytes reconstructed by somatic cell nuclear transfer. Zygote 13: 295-302. http://dx.doi.org/10.1017/S0967199405003333 PMid:16388697