Publications

Found 3 results
Filters: Author is X. Shen  [Clear All Filters]
2012
M. Sun, Jiang, K., Zhang, F., Zhang, D., Shen, A., Jiang, M., Shen, X., and Ma, L., Effects of various salinities on Na+-K+-ATPase, Hsp70 and Hsp90 expression profiles in juvenile mitten crabs, Eriocheir sinensis, vol. 11, pp. 978-986, 2012.
Beck FX, Neuhofer W and Muller E (2000). Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am. J. Physiol. Ren. Physiol. 279: F203-F215. PMid:10919839 Chiang HL, Terlecky SR, Plant CP and Dice JF (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382-385. http://dx.doi.org/10.1126/science.2799391 PMid:2799391 Deane EE, Kelly SP, Luk JC and Woo NY (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar. Biotechnol. 4: 193-205. Ding S, Wang F, Dong S and Gao Q (2009). Effects of salinity fluctuation amplitudes on growth, osmolarity, Na+-K+- ATPase activity and Hsp70 of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Chin. J. Oceanol. Limnol. 27: 723-728. http://dx.doi.org/10.1007/s00343-009-9185-0 Feder ME and Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. http://dx.doi.org/10.1146/annurev.physiol.61.1.243 PMid:10099689 Harris RR and Santos MCF (1993). Sodium uptake and transport (Na+ + K+) ATPase changes following Na+ depletion and low salinity acclimation in the mangrove crab Ucides cordatus (L.). Comp. Biochem. Physiol. 105: 35-42. http://dx.doi.org/10.1016/0300-9629(93)90170-9 Herborg LM, Rushton SP, Clare AS and Bentley MG (2003). Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia 503: 21-28. http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c Holliday CW (1985). Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab, Uca pugnax. J. Exp. Zool. 233: 199-208. http://dx.doi.org/10.1002/jez.1402330206 Kim CH and Hwang SG (1995). The complete larval development of the mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda, Brachyura, Grapsidae) reared in the laboratory and a key to the known zoeae of the Varuninae. Crustaceana 68: 793-812. Mantel LH and Farmer LL (1983). Osmotic and Ionic Regulation. In: The Biology of Crustacea (Bliss DE and Mantel LH, eds.). Academic Press, London, 54-126. Montú M, Anger K and Bakker C (1996). Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgol. Meeresunters 50: 223-252. http://dx.doi.org/10.1007/BF02367153 Neufeld GJ, Holliday CW and Pritchard JB (1980). Salinity adaption of gill Na, K-ATPase in the blue crab, Callinectes sapidus. J. Exp. Zool. 211: 215-224. http://dx.doi.org/10.1002/jez.1402110210 Pan F, Zarate JM, Tremblay GC and Bradley TM (2000). Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J. Exp. Zool. 287: 199-212. http://dx.doi.org/10.1002/1097-010X(20000801)287:3<199::AID-JEZ2>3.0.CO;2-3 Pan LQ and Luan ZH (2005). The effects of salinity on development and Na+/K+-ATPase activity of Marsupenaeus japonicus postlarvae. Acta Hydrobiol. Sin. 29: 699-703. Péqueux A, Gilles R and Marshall WS (1988). NaCl Transport in Gills and Related Structures. In: Advances in Comparative and Environmental Physiology (Greger R, ed.). Springer, Berlin, 1-73. Siebers D, Leweck K, Markus H and Winkler A (1982). Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar. Biol. 69: 37-43. http://dx.doi.org/10.1007/BF00396958 Skou JC and Esmann M (1992). The Na, K-ATPase. J. Bioenerg. Biomembr. 24: 249-261. PMid:1328174 Spees JL, Chang SA, Snyder MJ and Chang ES (2002). Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol. Bull. 203: 331-337. http://dx.doi.org/10.2307/1543575 PMid:12480723 Torres G, Charmantier-Daures M, Chifflet S and Anger K (2007). Effects of long-term exposure to different salinities on the location and activity of Na+-K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147: 460-465. http://dx.doi.org/10.1016/j.cbpa.2007.01.020 Towle DW (1981). Transport-related ATPases as probes of tissue function in three terrestrial crabs of Palau. J. Exp. Zool. 218: 89-95. http://dx.doi.org/10.1002/jez.1402180111 Towle DW (1997). Molecular approaches to understanding salinity adaptation of estuarine animals. Am. Zool. 37: 575-584. Towle DW, Palmer GE and Harris JL III (1976). Role of gill Na+, K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool. 196: 315-322. http://dx.doi.org/10.1002/jez.1401960306 Welch WJ (1993). How cells respond to stress. Sci. Am. 268: 56-64. http://dx.doi.org/10.1038/scientificamerican0593-56 PMid:8097593 Whiteley NM, Scott JL, Breeze SJ and McCann L (2001). Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204: 1003-1011. PMid:11171423