Publications

Found 6 results
Filters: Author is M.N. Rocha  [Clear All Filters]
2012
R. B. Castro, Longui, C. A., Faria, C. D. C., Silva, T. S., Richeti, F., Rocha, M. N., Melo, M. R., Pereira, W. L., Chamlian, E. G., and Rivetti, L. A., Tissue-specific adaptive levels of glucocorticoid receptor alpha mRNA and their relationship with insulin resistance, vol. 11, pp. 3975-3987, 2012.
Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, et al. (2009). Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J. Clin. Endocrinol. Metab. 94: 2692-2701. http://dx.doi.org/10.1210/jc.2009-0370 PMid:19470627   Balachandran A, Guan H, Sellan M, van US, et al. (2008). Insulin and dexamethasone dynamically regulate adipocyte 11beta-hydroxysteroid dehydrogenase type 1. Endocrinology 149: 4069-4079. http://dx.doi.org/10.1210/en.2008-0088 PMid:18467433 PMCid:2488250   Bansilal S, Farkouh ME and Fuster V (2007). Role of insulin resistance and hyperglycemia in the development of atherosclerosis. Am. J. Cardiol. 99: 6B-14B. http://dx.doi.org/10.1016/j.amjcard.2006.11.002 PMid:17307054   Benetos A, Thomas F, Pannier B, Bean K, et al. (2008). All-cause and cardiovascular mortality using the different definitions of metabolic syndrome. Am. J. Cardiol. 102: 188-191. http://dx.doi.org/10.1016/j.amjcard.2008.03.037 PMid:18602519   Deveci E, Yesil M, Akinci B, Yesil S, et al. (2009). Evaluation of insulin resistance in normoglycemic patients with coronary artery disease. Clin. Cardiol. 32: 32-36. http://dx.doi.org/10.1002/clc.20379 PMid:19143010   Di Blasio AM, van Rossum EF, Maestrini S, Berselli ME, et al. (2003). The relation between two polymorphisms in the glucocorticoid receptor gene and body mass index, blood pressure and cholesterol in obese patients. Clin. Endocrinol. 59: 68-74. http://dx.doi.org/10.1046/j.1365-2265.2003.01798.x   Duma D, Jewell CM and Cidlowski JA (2006). Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J. Steroid Biochem. Mol. Biol. 102: 11-21. http://dx.doi.org/10.1016/j.jsbmb.2006.09.009 PMid:17070034   Escher G, Galli I, Vishwanath BS, Frey BM, et al. (1997). Tumor necrosis factor alpha and interleukin 1beta enhance the cortisone/cortisol shuttle. J. Exp. Med. 186: 189-198. http://dx.doi.org/10.1084/jem.186.2.189 PMid:9221748 PMCid:2198986   Faria CD, Castro RB, Longui CA, Kochi C, et al. (2010). Impact of prolonged low-grade physical training on the in vivo glucocorticoid sensitivity and on glucocorticoid receptor-alpha mRNA levels of obese adolescents. Horm. Res. Paediatr. 73: 458-464. http://dx.doi.org/10.1159/000313591 PMid:20407233   Fernandes-Rosa FL, Bueno AC, de Souza RM, de CM, et al. (2010). Mineralocorticoid receptor p.I180V polymorphism: association with body mass index and LDL-cholesterol levels. J. Endocrinol. Invest. 33: 472-477. PMid:19955850   Gathercole LL, Bujalska IJ, Stewart PM and Tomlinson JW (2007). Glucocorticoid modulation of insulin signaling in human subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 92: 4332-4339. http://dx.doi.org/10.1210/jc.2007-1399 PMid:17711920   Geloneze B, Repetto EM, Geloneze SR, Tambascia MA, et al. (2006). The threshold value for insulin resistance (HOMA-IR) in an admixtured population IR in the Brazilian Metabolic Syndrome Study. Diabetes Res. Clin. Pract. 72: 219-220. http://dx.doi.org/10.1016/j.diabres.2005.10.017 PMid:16310881   Georgakopoulos A and Tsawdaroglou N (1996). Insulin potentiates the transactivation potency of the glucocorticoid receptor. FEBS Lett. 381: 177-182. http://dx.doi.org/10.1016/0014-5793(96)00115-9   Gesina E, Blondeau B, Milet A, Le N, I, et al. (2006). Glucocorticoid signalling affects pancreatic development through both direct and indirect effects. Diabetologia 49: 2939-2947. http://dx.doi.org/10.1007/s00125-006-0449-3 PMid:17001468 PMCid:1885455   Goedecke JH, Wake DJ, Levitt NS, Lambert EV, et al. (2006). Glucocorticoid metabolism within superficial subcutaneous rather than visceral adipose tissue is associated with features of the metabolic syndrome in South African women. Clin. Endocrinol. 65: 81-87. http://dx.doi.org/10.1111/j.1365-2265.2006.02552.x PMid:16817824   Gross KL, Lu NZ and Cidlowski JA (2009). Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol. Cell Endocrinol. 300: 7-16. http://dx.doi.org/10.1016/j.mce.2008.10.001 PMid:19000736 PMCid:2674248   Hoppmann J, Perwitz N, Meier B, Fasshauer M, et al. (2010). The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. J. Endocrinol. 204: 153-164. http://dx.doi.org/10.1677/JOE-09-0292 PMid:19939912   Longui CA and Faria CD (2009). Evaluation of glucocorticoid sensitivity and its potential clinical applicability. Horm. Res. 71: 305-309. http://dx.doi.org/10.1159/000223413 PMid:19506386   Löwenberg M, Tuynman J, Scheffer M, Verhaar A, et al. (2006). Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology 147: 3555-3562. http://dx.doi.org/10.1210/en.2005-1602 PMid:16574792   Lu NZ and Cidlowski JA (2005). Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell 18: 331-342. http://dx.doi.org/10.1016/j.molcel.2005.03.025 PMid:15866175   Lundgren M, Buren J, Ruge T, Myrnas T, et al. (2004). Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J. Clin. Endocrinol. Metab. 89: 2989-2997. http://dx.doi.org/10.1210/jc.2003-031157 PMid:15181089   Masuzaki H, Paterson J, Shinyama H, Morton NM, et al. (2001). A transgenic model of visceral obesity and the metabolic syndrome. Science 294: 2166-2170. http://dx.doi.org/10.1126/science.1066285 PMid:11739957   Melo MR, Faria CD, Melo KC, Reboucas NA, et al. (2004). Real-time PCR quantitation of glucocorticoid receptor alpha isoform. BMC Mol. Biol. 5: 19. http://dx.doi.org/10.1186/1471-2199-5-19 PMid:15507144 PMCid:529441   Mericq V, Medina P, Bouwman C, Johnson MC, et al. (2009). Expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 enzyme in subcutaneous and visceral adipose tissue of prepubertal children. Horm. Res. 71: 89-93. http://dx.doi.org/10.1159/000183897 PMid:19129713   Reaven GM (2008). Insulin resistance: the link between obesity and cardiovascular disease. Endocrinol. Metab. Clin. North Am. 37: 581-viii. http://dx.doi.org/10.1016/j.ecl.2008.06.005 PMid:18775353   Rebuffé-Scrive M, Bronnegard M, Nilsson A, Eldh J, et al. (1990). Steroid hormone receptors in human adipose tissues. J. Clin. Endocrinol. Metab. 71: 1215-1219. http://dx.doi.org/10.1210/jcem-71-5-1215 PMid:2229280   Reynolds RM, Chapman KE, Seckl JR, Walker BR, et al. (2002). Skeletal muscle glucocorticoid receptor density and insulin resistance. JAMA 287: 2505-2506. http://dx.doi.org/10.1001/jama.287.19.2505 PMid:12020330   Rosenbaum P and Ferreira SRG (2003). An update on cardiovascular risk of metabolic syndrome. Arq. Bras. Endocrinol. Metab. 47: 220-227. http://dx.doi.org/10.1590/S0004-27302003000300004   Sousa Silva T, Longui CA, Rocha MN, Faria CD, et al. (2010). Prolonged physical training decreases mRNA levels of glucocorticoid receptor and inflammatory genes. Horm. Res. Paediatr. 74: 6-14. http://dx.doi.org/10.1159/000313586 PMid:20407229   Stewart PM (2005). Tissue-specific Cushing's syndrome uncovers a new target in treating the metabolic syndrome - 11beta-hydroxysteroid dehydrogenase type 1. Clin. Med. 5: 142-146. PMid:15847006   Vegiopoulos A and Herzig S (2007). Glucocorticoids, metabolism and metabolic diseases. Mol. Cell Endocrinol. 275: 43-61. http://dx.doi.org/10.1016/j.mce.2007.05.015 PMid:17624658   Wake DJ, Rask E, Livingstone DE, Soderberg S, et al. (2003). Local and systemic impact of transcriptional up-regulation of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J. Clin. Endocrinol. Metab. 88: 3983-3988. http://dx.doi.org/10.1210/jc.2003-030286 PMid:12915696   Wallace AD and Cidlowski JA (2001). Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276: 42714-42721. http://dx.doi.org/10.1074/jbc.M106033200 PMid:11555652   Wallace TM, Levy JC and Matthews DR (2004). Use and abuse of HOMA modeling. Diabetes Care 27: 1487-1495. http://dx.doi.org/10.2337/diacare.27.6.1487 PMid:15161807   Wang M (2005). The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr. Metab. 2: 3. http://dx.doi.org/10.1186/1743-7075-2-3 PMid:15689240 PMCid:548667   Wassink AM, Van Der Graaf Y, Olijhoek JK and Visseren FL (2008). Metabolic syndrome and the risk of new vascular events and all-cause mortality in patients with coronary artery disease, cerebrovascular disease, peripheral arterial disease or abdominal aortic aneurysm. Eur. Heart J. 29: 213-223. http://dx.doi.org/10.1093/eurheartj/ehm582 PMid:18199567   Webster JC, Jewell CM, Bodwell JE, Munck A, et al. (1997). Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J. Biol. Chem. 272: 9287-9293. http://dx.doi.org/10.1074/jbc.272.14.9287 PMid:9083064   Whorwood CB, Donovan SJ, Wood PJ and Phillips DI (2001). Regulation of glucocorticoid receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J. Clin. Endocrinol. Metab. 86: 2296-2308. http://dx.doi.org/10.1210/jc.86.5.2296 PMid:11344242   Whorwood CB, Donovan SJ, Flanagan D, Phillips DI, et al. (2002). Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 51: 1066-1075. http://dx.doi.org/10.2337/diabetes.51.4.1066 PMid:11916927   Zennaro MC, Caprio M and Feve B (2009). Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol. Metab. 20: 444-451. http://dx.doi.org/10.1016/j.tem.2009.05.006 PMid:19800255
2010
A. L. Oliveira, Rodrigues, F. F. O., Santos, R. E., Aoki, T., Rocha, M. N., Longui, C. A., and Melo, M. B., GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced breast cancer, vol. 9, pp. 1045-1053, 2010.
Adler V, Yin Z, Fuchs SY, Benezra M, et al. (1999). Regulation of JNK signaling by GSTp. EMBO J. 18: 1321-1334. http://dx.doi.org/10.1093/emboj/18.5.1321 PMid:10064598 PMCid:1171222   Allan JM, Wild CP, Rollinson S, Willett EV, et al. (2001). Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc. Natl. Acad. Sci. U. S. A. 98: 11592-11597. http://dx.doi.org/10.1073/pnas.191211198 PMid:11553769 PMCid:58774   Alpert LC, Schecter RL, Berry DA, Melnychuk D, et al. (1997). Relation of glutathione S-transferase alpha and mu isoforms to response to therapy in human breast cancer. Clin. Cancer Res. 3: 661-667. PMid:9815734   Ambrosone CB, Sweeney C, Coles BF, Thompson PA, et al. (2001). Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res. 61: 7130-7135. PMid:11585745   Arrick BA and Nathan CF (1984). Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 44: 4224-4232. PMid:6380705   Burg D and Mulder GJ (2002). Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab. Rev. 34: 821-863. http://dx.doi.org/10.1081/DMR-120015695 PMid:12487151   Cho SG, Lee YH, Park HS, Ryoo K, et al. (2001). Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol. Chem. 276: 12749-12755. http://dx.doi.org/10.1074/jbc.M005561200 PMid:11278289   Daly AK (2003). Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam. Clin. Pharmacol. 17: 27-41. http://dx.doi.org/10.1046/j.1472-8206.2003.00119.x PMid:12588628   Dang DT, Chen F, Kohli M, Rago C, et al. (2005). Glutathione S-transferase pi1 promotes tumorigenicity in HCT116 human colon cancer cells. Cancer Res. 65: 9485-9494. http://dx.doi.org/10.1158/0008-5472.CAN-05-1930 PMid:16230413   Dirven HA, van Ommen B and van Bladeren PJ (1994). Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res. 54: 6215-6220. PMid:7954469   Hamada S, Kamada M, Furumoto H, Hirao T, et al. (1994). Expression of glutathione S-transferase-pi in human ovarian cancer as an indicator of resistance to chemotherapy. Gynecol. Oncol. 52: 313-319. http://dx.doi.org/10.1006/gyno.1994.1055 PMid:8157188   Hayes JD and Pulford DJ (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30: 445-600. http://dx.doi.org/10.3109/10409239509083491 PMid:8770536   Howells RE, Holland T, Dhar KK, Redman CW, et al. (2001). Glutathione S-transferase GSTM1 and GSTT1 genotypes in ovarian cancer: association with p53 expression and survival. Int. J. Gynecol. Cancer 11: 107-112. http://dx.doi.org/10.1046/j.1525-1438.2001.011002107.x PMid:11328408   Huang J, Tan PH, Thiyagarajan J and Bay BH (2003). Prognostic significance of glutathione S-transferase-pi in invasive breast cancer. Mod. Pathol. 16: 558-565. http://dx.doi.org/10.1097/01.MP.0000071842.83169.5A PMid:12808061   Khedhaier A, Remadi S, Corbex M, Ahmed SB, et al. (2003). Glutathione S-transferases (GSTT1 and GSTM1) gene deletions in Tunisians: susceptibility and prognostic implications in breast carcinoma. Br. J. Cancer 89: 1502-1507. http://dx.doi.org/10.1038/sj.bjc.6601292 PMid:14562023 PMCid:2394332   L'Ecuyer T, Allebban Z, Thomas R and Vander Heide R (2004). Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. Am. J. Physiol. Heart Circ. Physiol. 286: H2057-2064. http://dx.doi.org/10.1152/ajpheart.00778.2003 PMid:14726301   Leonessa F and Clarke R (2003). ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer 10: 43-73. http://dx.doi.org/10.1677/erc.0.0100043 PMid:12653670   Leyland-Jones BR, Townsend AJ, Tu CP, Cowan KH, et al. (1991). Antineoplastic drug sensitivity of human MCF-7 breast cancer cells stably transfected with a human alpha class glutathione S-transferase gene. Cancer Res. 51: 587-594. PMid:1985777   Lizard-Nacol S, Coudert B, Colosetti P, Riedinger JM, et al. (1999). Glutathione S-transferase M1 null genotype: lack of association with tumour characteristics and survival in advanced breast cancer. Breast Cancer Res. 1: 81-87. http://dx.doi.org/10.1186/bcr17 PMid:11056682 PMCid:13914   McIlwain CC, Townsend DM and Tew KD (2006). Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25: 1639-1648. http://dx.doi.org/10.1038/sj.onc.1209373 PMid:16550164   Morrow CS, Smitherman PK, Diah SK, Schneider E, et al. (1998). Coordinated action of glutathione S-transferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification. Mechanism of GST A1-1- and MRP1-associated resistance to chlorambucil in MCF7 breast carcinoma cells. J. Biol. Chem. 273: 20114-20120. http://dx.doi.org/10.1074/jbc.273.32.20114 PMid:9685354   Moscow JA, Townsend AJ and Cowan KH (1989). Elevation of pi class glutathione S-transferase activity in human breast cancer cells by transfection of the GSTpi gene and its effect on sensitivity to toxins. Mol. Pharmacol. 36: 22-28. PMid:2747627   Naoe T, Tagawa Y, Kiyoi H, Kodera Y, et al. (2002). Prognostic significance of the null genotype of glutathione S-transferase-T1 in patients with acute myeloid leukemia: increased early death after chemotherapy. Leukemia 16: 203-208. http://dx.doi.org/10.1038/sj.leu.2402361 PMid:11840286   O'Brien ML and Tew KD (1996). Glutathione and related enzymes in multidrug resistance. Eur. J. Cancer 32: 967-978. http://dx.doi.org/10.1016/0959-8049(96)00051-2   O'Brien M, Kruh GD and Tew KD (2000). The influence of coordinate overexpression of glutathione phase II detoxification gene products on drug resistance. J. Pharmacol. Exp. Ther. 294: 480-487. PMid:10900222   Pakunlu RI, Cook TJ and Minko T (2003). Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm. Res. 20: 351-359. http://dx.doi.org/10.1023/A:1022687617318 PMid:12669953   Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. http://dx.doi.org/10.3322/canjclin.55.2.74 PMid:15761078   Paumi CM, Ledford BG, Smitherman PK, Townsend AJ, et al. (2001). Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance. Kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. J. Biol. Chem. 276: 7952-7956. http://dx.doi.org/10.1074/jbc.M009400200 PMid:11115505   Riddick DS, Lee C, Ramji S, Chinje EC, et al. (2005). Cancer chemotherapy and drug metabolism. Drug Metab. Dispos. 33: 1083-1096. http://dx.doi.org/10.1124/dmd.105.004374 PMid:16049130   Rodrigues FF, Santos RE, Melo MB, Silva MA, et al. (2008). Correlation of polymorphism C3435T of the MDR-1 gene and the response of primary chemotherapy in women with locally advanced breast cancer. Genet. Mol. Res. 7: 177-183. http://dx.doi.org/10.4238/vol7-1gmr400 PMid:18393221   Russo A and Mitchell JB (1985). Potentiation and protection of doxorubicin cytotoxicity by cellular glutathione modulation. Cancer Treat. Rep. 69: 1293-1296. PMid:4092192   Schisselbauer JC, Silber R, Papadopoulos E, Abrams K, et al. (1990). Characterization of glutathione S-transferase expression in lymphocytes from chronic lymphocytic leukemia patients. Cancer Res. 50: 3562-3568. PMid:2340505   Shea TC, Claflin G, Comstock KE, Sanderson BJ, et al. (1990). Glutathione transferase activity and isoenzyme composition in primary human breast cancers. Cancer Res. 50: 6848-6853. PMid:2208151   Tew KD (1994). Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54: 4313-4320. PMid:8044778   Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, et al. (2000). New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 92: 205-216. http://dx.doi.org/10.1093/jnci/92.3.205 PMid:10655437   Townsend AJ and Cowan KH (1989). Glutathione S-transferases and antineoplastic drug resistance. Cancer Bull. 41: 31-36   Townsend D and Tew K (2003a). Cancer drugs, genetic variation and the glutathione-S-transferase gene family. Am. J. Pharmacogenomics 3: 157-172. http://dx.doi.org/10.2165/00129785-200303030-00002 PMid:12814324   Townsend DM and Tew KD (2003b). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22: 7369-7375. http://dx.doi.org/10.1038/sj.onc.1206940 PMid:14576844   Wilson MH, Grant PJ, Hardie LJ and Wild CP (2000). Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction. FASEB J. 14: 791-796. PMid:10744635   Yang G, Shu XO, Ruan ZX, Cai QY, et al. (2005). Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer 103: 52-58. http://dx.doi.org/10.1002/cncr.20729 PMid:15565566