Publications

Found 17 results
Filters: Author is L. Wu  [Clear All Filters]
2016
L. Wu, Long, Z. G., Dai, Z. S., Wu, L., Long, Z. G., Dai, Z. S., Wu, L., Long, Z. G., and Dai, Z. S., 135G/C polymorphism in the RAD51 gene and acute myeloid leukemia risk: a meta-analysis, vol. 15, p. -, 2016.
L. Wu, Long, Z. G., Dai, Z. S., Wu, L., Long, Z. G., Dai, Z. S., Wu, L., Long, Z. G., and Dai, Z. S., 135G/C polymorphism in the RAD51 gene and acute myeloid leukemia risk: a meta-analysis, vol. 15, p. -, 2016.
L. Wu, Long, Z. G., Dai, Z. S., Wu, L., Long, Z. G., Dai, Z. S., Wu, L., Long, Z. G., and Dai, Z. S., 135G/C polymorphism in the RAD51 gene and acute myeloid leukemia risk: a meta-analysis, vol. 15, p. -, 2016.
Y. Wei, Yuan, F. J., Zhou, W. B., Wu, L., Chen, L., Wang, J. J., Zhang, Y. S., Wei, Y., Yuan, F. J., Zhou, W. B., Wu, L., Chen, L., Wang, J. J., and Zhang, Y. S., Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax, vol. 15, p. -, 2016.
Y. Wei, Yuan, F. J., Zhou, W. B., Wu, L., Chen, L., Wang, J. J., Zhang, Y. S., Wei, Y., Yuan, F. J., Zhou, W. B., Wu, L., Chen, L., Wang, J. J., and Zhang, Y. S., Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax, vol. 15, p. -, 2016.
Y. Ren, Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., Jiang, D., Ren, Y., Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., and Jiang, D., hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells, vol. 15, p. -, 2016.
Y. Ren, Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., Jiang, D., Ren, Y., Han, C., Wang, J., Jia, Y., Kong, L., Eerdun, T., Wu, L., and Jiang, D., hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells, vol. 15, p. -, 2016.
L. Mao, Geng, G. Y., Han, W. J., Zhao, M. H., Wu, L., Liu, H. L., Mao, L., Geng, G. Y., Han, W. J., Zhao, M. H., Wu, L., and Liu, H. L., Interleukin-6 (IL-6) -174G/C genomic polymorphism contribution to the risk of coronary artery disease in a Chinese population, vol. 15, p. -, 2016.
L. Mao, Geng, G. Y., Han, W. J., Zhao, M. H., Wu, L., Liu, H. L., Mao, L., Geng, G. Y., Han, W. J., Zhao, M. H., Wu, L., and Liu, H. L., Interleukin-6 (IL-6) -174G/C genomic polymorphism contribution to the risk of coronary artery disease in a Chinese population, vol. 15, p. -, 2016.
L. Wu, Zhao, M. H., Geng, G. Y., Mao, L., and Liu, H. J., Statistical analysis of the relationship between IL-10 gene promoter polymorphisms and the development of coronary artery disease, vol. 15, no. 4, p. -, 2016.
Conflict of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe thank for the great help from nurses of Zhengzhou People’s Hospital, and these staffs help us to perform face to face interview to study subjects.REFERENCESAbu E, Maaty MA, Hassanein SI, Gad MZ, et al (2015). Genetic variation in vitamin D receptor gene (Fok1:rs2228570) is associated with risk of coronary artery disease. Biomarkers 21: 1-5. Blagodatskikh KA, Evdokimova MA, Agapkina IuV, Nikitin AG, et al (2010). [Gene IL6 G(-174)C and gene IL10 G(-1082)A polymorphisms are associated with unfavourable outcomes in patients with acute coronary syndrome]. Mol. Biol. (Mosk.) 44: 839-846. da Silva HD, da Silva AP, da Silva HA, Asano NM, et al (2014). Interferon gamma and Interleukin 10 polymorphisms in Brazilian patients with systemic lupus erythematosus. Mol. Biol. Rep. 41: 2493-2500. http://dx.doi.org/10.1007/s11033-014-3106-9 Elsaid A, Abdel-Aziz AF, Elmougy R, Elwaseef AM, et al (2014). Association of polymorphisms G(-174)C in IL-6 gene and G(-1082)A in IL-10 gene with traditional cardiovascular risk factors in patients with coronary artery disease. Indian J. Biochem. Biophys. 51: 282-292. Geng GY, Liu HL, Zhao YJ, Wu L, et al (2015). Correlation between polymorphisms in the IL-17A and IL-17F genes and development of coronary artery disease. Genet. Mol. Res. 14: 11488-11494. http://dx.doi.org/10.4238/2015.September.25.15 Go AS, Mozaffarian D, Roger VL, Benjamin EJ, American Heart Association Statistics Committee and Stroke Statistics Subcommitteeet al (2013). Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 127: e6-e245. http://dx.doi.org/10.1161/CIR.0b013e31828124ad Go AS, Mozaffarian D, Roger VL, Benjamin EJ, American Heart Association Statistics Committee and Stroke Statistics Subcommitteeet al (2014). Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129: e28-e292. http://dx.doi.org/10.1161/01.cir.0000441139.02102.80 Guo J, He YH, Chen F, Jiang MH, et al (2012). The A to G polymorphism at -1082 of the interleukin-10 gene is rare in the Han Chinese population. Mol. Med. Rep. 6: 894-896. He J, Gu D, Wu X, Reynolds K, et al (2005). Major causes of death among men and women in China. N. Engl. J. Med. 353: 1124-1134. http://dx.doi.org/10.1056/NEJMsa050467 Iwanicki T, Balcerzyk A, Niemiec P, Nowak T, et al (2015). CYP7A1 gene polymorphism located in the 5′ upstream region modifies the risk of coronary artery disease. Dis. Markers 2015: 185969. http://dx.doi.org/10.1155/2015/185969 Koch W, Kastrati A, Böttiger C, Mehilli J, et al (2001). Interleukin-10 and tumor necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis 159: 137-144. http://dx.doi.org/10.1016/S0021-9150(01)00467-1 Lagha A, Zidi S, Stayoussef M, Gazouani E, et al (2015). Interleukin-1β, Interleukin1-Ra, Interleukin-10, and tumor necrosis factor-α polymorphisms in Tunisian patients with rheumatoid arthritis. Pathol. Biol. (Paris) 63: 179-184. http://dx.doi.org/10.1016/j.patbio.2015.04.004 Li L, Li E, Zhang LH, Jian LG, et al (2015). IL-6-174G/C and IL-6-572C/G polymorphisms are associated with increased risk of coronary artery disease. Genet. Mol. Res. 14: 8451-8457. http://dx.doi.org/10.4238/2015.July.28.12 Liu N, Lu H, Tao F, Guo T, et al (2011). An association of interleukin-10 gene polymorphisms with Graves’ disease in two Chinese populations. Endocrine 40: 90-94. http://dx.doi.org/10.1007/s12020-011-9444-7 Liu W, Liu Y, Jiang H, Ding X, et al (2013). Plasma levels of interleukin 18, interleukin 10, and matrix metalloproteinase-9 and -137G/C polymorphism of interleukin 18 are associated with incidence of in-stent restenosis after percutaneous coronary intervention. Inflammation 36: 1129-1135. http://dx.doi.org/10.1007/s10753-013-9647-6 Ren B, She Q, et al (2015). Study on the association between IL-1β, IL-8 and IL-10 gene polymorphisms and risk of coronary artery disease. Int. J. Clin. Exp. Med. 8: 7937-7943. Shi GL, Cai XX, Su YM, Chen C, et al (2015a). Interleukin-10 promotor -592A/C polymorphism is associated with slow coronary flow in Han Chinese. Int. J. Clin. Exp. Pathol. 8: 4091-4098. Shi Y, Zhang J, Tan C, Xu W, et al (2015b). Matrix Metalloproteinase-2 Polymorphisms and Incident Coronary Artery Disease: A Meta-Analysis. Medicine (Baltimore) 94: e824. http://dx.doi.org/10.1097/MD.0000000000000824 Sugimoto M, Furuta T, Shirai N, Nakamura A, et al (2007). Effects of interleukin-10 gene polymorphism on the development of gastric cancer and peptic ulcer in Japanese subjects. J. Gastroenterol. Hepatol. 22: 1443-1449. http://dx.doi.org/10.1111/j.1440-1746.2006.04613.x Xia J, Cai W, Peng C, et al (2015). Association of APOA5 T1131C polymorphism and risk of coronary artery disease. Int. J. Clin. Exp. Med. 8: 8986-8994. Yang HT, Wang SL, Yan LJ, Qian P, et al (2015). Association of interleukin gene polymorphisms with the risk of coronary artery disease. Genet. Mol. Res. 14: 12489-12496. http://dx.doi.org/10.4238/2015.October.16.16 Wang W, Hu SS, Kong LZ, Gao RL, Editorial Boardet al (2014). Summary of report on cardiovascular diseases in China, 2012. Biomed. Environ. Sci. 27: 552-558. Zhang MM, Xie X, Ma YT, Zheng YY, et al (2015). Association of COX-2 -765G>C genetic polymorphism with coronary artery disease: a meta-analysis. Int. J. Clin. Exp. Med. 8: 7412-7418.    
2012
G. H. Xu, Su, W. Y., Shu, Y. J., Cong, W. W., Wu, L., and Guo, C. H., RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome, vol. 11, pp. 1741-1751, 2012.
Chen GY, Dong P, Wei YM, He K, et al. (2007). Development of Ee chromosome specific RGAP markers for Lophopyrum elongatum (Host) A.Löve in wheat background by using resistance gene analog polymorphism. Acta Agron. Sin. 33: 1782-1787.   Chowdhury MA, Andrahennandi CP, Slinkard AE and Vandenberg A (2001). RAPD and SCAR markers for resistance to acochyta blight in lentil. Euphytica 118: 331-337. http://dx.doi.org/10.1023/A:1017581817201   Deal KR, Goyal S and Dvorak J (1999). Arm location of Lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress. Euphytica 108: 193-198. http://dx.doi.org/10.1023/A:1003685032674   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Friebe B, Jiang J, Raupp WJ, McIntosh RA, et al. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59-87. http://dx.doi.org/10.1007/BF00035277   Hernández P, Martín A and Dorado G (1999). Development of SCARs by direct sequencing or RAPD products: a practical tool for the introgression and marker-assisted selection of wheat. Mol. Breed. 5: 245-253. http://dx.doi.org/10.1023/A:1009637928471   Jauhar PP and Peterson TS (2000). Toward Transferring Scab Resistance From a Diploid Wild Grass, Lophopyrum elongatum, Into Durum Wheat. In: Proceedings of the 2000 National Fusarium Head Blight Forum. Erlanger, Kentucky, 201-204.   Knott DR, Dvorak J and Nanda JS (1977). The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Can. J. Genet. Cytol. 19: 75-79.   Li YJ, Li B, Liu JZ, Li JY, et al. (1998). Chromosomal location of the genes coding for acid phosphatase and alkaline phosphatase in Agropyron elongatum (2n=2x=14, EE). Acta Genet. Sin. 25: 449-453.   Liu C, Yang ZJ, Li GR, Zeng ZX, et al. (2008). Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica 159: 249-258. http://dx.doi.org/10.1007/s10681-007-9484-5   Liu SB, Jia JZ, Wang HG, Kong LR et al. (1998). The polymorphism between Thinopyrum (Elytrigia elongatum, 2n = 14) and common wheat and RAPD marker specific for E genome. Acta Agron. Sin. 24: 687-690.   Ma JX, Dong YC and Jia JZ (1999). The location of wheat stripe rust resistance gene from Thinopyrum. Chin. Sci. Bull. 44: 65-69.   Ma JX, Zhou RH, Dong YS and Jia JZ (2000). Control and inheritance of resistance to yellow rust in Triticum aestivum- Lophopyrum elongatum chromosome substitution lines. Euphytica 111: 57-60. http://dx.doi.org/10.1023/A:1003716316395   Mullan DJ, Platteter A, Teakle NL, Appels R, et al. (2005). EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48: 811-822. http://dx.doi.org/10.1139/g05-040 PMid:16391687   Oliver RE, Cai X, Xu SS, Chen X, et al. (2005). Wheat-alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Sci. 45: 1353-1360. http://dx.doi.org/10.2135/cropsci2004.0503   Omielan JA, Epstein E and Dvorák J (1991). Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34: 961-974. http://dx.doi.org/10.1139/g91-149   Prins R, Marais GF, Pretorius ZA, Janse BJH, et al. (1997). A study of modified forms of the Lr19 translocation of common wheat. Theor. Appl. Genet. 95: 424-430. http://dx.doi.org/10.1007/s001220050579   Reynolds MP, Calderini DF, Condon AG and Rajaram S (2001). Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum. Euphytica 119: 139-144. http://dx.doi.org/10.1023/A:1017521800795   Roundy BA (1985). Root penetration and shoot elongation of tall wheatgrass and basin wildrye in relation to salinity. Can. J. Plant Sci. 65: 335-343. http://dx.doi.org/10.4141/cjps85-047   Sharma D and Knott DR (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137-143.   Sharma H, Ohm H, Goulart L, Lister R, et al. (1995). Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38: 406-413. http://dx.doi.org/10.1139/g95-052 PMid:18470179   Sharma HC, Ohm HW, Lister RW, Foster JE, et al. (1989). Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus. Theor. Appl. Genet. 77: 369-374. http://dx.doi.org/10.1007/BF00305830   Shen X and Ohm H (2006). Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed. 125: 424-429. http://dx.doi.org/10.1111/j.1439-0523.2006.01274.x   Shen XR and Ohm H (2007). Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol. Breed. 20: 131-140. http://dx.doi.org/10.1007/s11032-007-9079-9   Shen X, Kong L and Ohm H (2004). Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor. Appl. Genet. 108: 808-813. http://dx.doi.org/10.1007/s00122-003-1492-9 PMid:14628111   Shukle RH, Lampe DJ, Lister RM and Foster JE (1987). Aphid feeding behavior: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathology 77: 725-729. http://dx.doi.org/10.1094/Phyto-77-725   Vaillancourt A, Nkongolo KK, Michael P and Mehes M (2008). Identification, characterisation, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. Euphytica 159: 297-306. http://dx.doi.org/10.1007/s10681-007-9492-5   Wu M, Zhang JP, Wang JC, Yang XM, et al. (2010). Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172: 363-372. http://dx.doi.org/10.1007/s10681-009-0033-2   Yang ZJ and Ren ZL (2001). Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. Löve genes for adult plant resistance to stripe rust in wheat background. Genet. Resour. Crop. Evol. 48: 183-187. http://dx.doi.org/10.1023/A:1011282231466   You MS, Li BY, Tian ZH, Tang CH, et al. (2003). Development of specific SSR marker for Ee-genome of Thinopyrum sp. by using wheat microsatellites. J. Agri. Biotec. 11: 577-581.   Zhang Li, Yan ZH, Zheng YL, Liu DC, et al. (2008). Development of Ee-chromosome specific AFLP and STS molecular marker for Lophopyrum elongatum in Chinese Spring Wheat Background. J. Agri. Biotec. 16: 465-473.   Zhang X, Shen X, Hao Y, Cai J, et al. (2011). A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor. Appl. Genet. 122: 263-270. http://dx.doi.org/10.1007/s00122-010-1441-3 PMid:20830464