Publications
Found 1 results
Filters: Author is X.-L. Yue [Clear All Filters]
“Fine-scale spatial genetic structure of an endangered marsh herb, Caldesia grandis (Alismataceae)”, vol. 11, pp. 2412-2421, 2012.
,
Allard RW, Kahler AL and Clegg MT (1977). Measuring Selection in Natural Populations. Springer-Verlag, NewYork.
Berg EE and Hamrick JL (1994). Spatial and genetic structure of two sandhills oaks: Quercus laevis and Quercus margaretta (Fagaceae). Am. J. Bot. 81: 7-14.
http://dx.doi.org/10.2307/2445556
Born C, Hardy OJ, Chevallier MH, Ossari S, et al. (2008). Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol. Ecol. 17: 2041-2050.
http://dx.doi.org/10.1111/j.1365-294X.2007.03685.x
PMid:18331246
Bouza N, Caujape-Castells J, Gonzalez-Perez MA, Batista F, et al. (2002). Population structure and genetic diversity of two endangered endemic species of the Canarian laurel forest: Dorycnium spectabile (Fabaceae) and Isoplexis chalcantha (Scrophulariaceae). Inter. J. Plant Sci. 163: 619-630.
http://dx.doi.org/10.1086/339720
Bucci G and Menozzi P (1995). Genetic-variation of RAPD markers in a Picea-abies Karst - Population. Heredity 75: 188-197.
http://dx.doi.org/10.1038/hdy.1995.123
Chen JM, Gituru WR, Wang YH and Wang QF (2006). The extent of clonality and genetic diversity in the rare Caldesia grandis (Alismataceae): comparative results for RAPD and ISSR markers. Aquat. Bot. 84: 301-307.
http://dx.doi.org/10.1016/j.aquabot.2005.11.008
Chung MG and Epperson BK (1999). Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53: 1068-1078.
http://dx.doi.org/10.2307/2640812
Cliff AD and Ord JK (1981). Spatial Processes: Models and Applications. Pion, London.
PMCid:1506472
Cook CDK (1996). Aquatic and Wetland Plants of India: A Reference Book and Identification Manual for the Vascular Plants Found in Permanent or Seasonal Fresh Water in the Subcontinent of India South of the Himalaya. Oxford University Press, Oxford.
Degen B, Caron H, Bandou E, Maggia L, et al. (2001). Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87: 497-507.
http://dx.doi.org/10.1046/j.1365-2540.2001.00942.x
PMid:11737299
Epperson BK (1990). Spatial Patterns of Genetic Variation Within Plant Populations. In: Plant Population Genetics, Breeding, and Genetic Resources (Brown AHD, Clegg MT, Kahler AL and Weir BS, eds.). Sinauer Associate Inc., Sunderland, 229-253.
PMid:1699215
Epperson BK (1993). Spatial and space-time correlations in systems of subpopulations with genetic drift and migration. Genetics 133: 711-727.
PMid:8454211 PMCid:1205354
Epperson BK and Clegg MT (1986). Spatial-autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (Ipomoea purpurea). Am. Nat. 128: 840-858.
http://dx.doi.org/10.1086/284609
Escudero A, Iriondo JM and Torres ME (2003). Spatial analysis of genetic diversity as a tool for plant conservation. Biol. Conser 113: 351-365.
http://dx.doi.org/10.1016/S0006-3207(03)00122-8
Fritsch P and Rieeseberg LH (1992). High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant Datisca glomerata. Nature 359: 633-636.
http://dx.doi.org/10.1038/359633a0
Gituru WR, Wang QF, Wang Y and Guo YH (2002). Pollination ecology, breeding system, and conservation of Caldesia grandis (Alismataceae), an endangered marsh plant in China. Bot. Bull. Acad. Sin. 43: 231-240.
Hamrick JL and Allard RW (1972). Microgeographical Variation in Allozyme Frequencies in Avena barbata. Proc. Natl. Acad. Sci. U. S. A. 69: 2100-2104.
http://dx.doi.org/10.1073/pnas.69.8.2100
PMid:16592002 PMCid:426877
He TH, Yang J and Rao GY (1999). Spatial autocorrelation analysis of plant population genetic variation. Chin. Bull. Bot. 16: 636-641.
He TH, Rao GY, You RL, Ge S, et al. (2000). Spatial autocorrelation of genetic variation in three stands of Ophiopogon xylorrhizus (Liliaceae s.l.). Ann. Bot. 86: 113-121.
http://dx.doi.org/10.1006/anbo.2000.1166
Hedrick PW (1986). Genetic polymorphism in heterogeneous environments: a decade later. Ann. Rev. Ecol. Syst. 17: 535-566.
http://dx.doi.org/10.1146/annurev.es.17.110186.002535
Heun M, Murphy JP and Phillips TD (1994). A comparison of RAPD and isozyme analysis for determining the genetic relationships among Avena sterilis L. accessions. Theor. Appl. Genet. 87: 689-696.
http://dx.doi.org/10.1007/BF00222894
Heywood JS (1991). Spatial analysis of genetic variation in plant populations. Ann. Rev. Ecol. Syst. 22: 335-355.
http://dx.doi.org/10.1146/annurev.es.22.110191.002003
Huff DR, Peakall R and Smouse PE (1993). RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. (Theor. Appl. Genet. 86: 927-934.
http://dx.doi.org/10.1007/BF00211043
Li A, Luo YB and Ge S (2002). Spatial autocorrelation study of population genetic structure of two orchid species. Biodiversity 10: 249-257.
Murawski DA and Hamrick JL (1990). Local genetic and clonal structure in the tropical terrestrial bromeliad, Aechmea magdalenae. Am. J. Bot. 77: 1201-1208.
http://dx.doi.org/10.2307/2444631
Reisch C, Schurm S and Poschlod P (2007). Spatial genetic structure and clonal diversity in an alpine population of Salix herbacea (Salicaceae). Ann. Bot. 99: 647-651.
http://dx.doi.org/10.1093/aob/mcl290
PMid:17242040 PMCid:2802930
Sokal RR (1979). Ecological Parameters Inferred from Spatial Correlograms. In: Contemporary Quantitative Ecology and Related Ecometrics (Patil GP and Rosenzweig ML, eds.). International Cooperative Publishing House, Fairland, 167-196.
Sokal RR and Oden NL (1978a). Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soci. 10: 199-228.
http://dx.doi.org/10.1111/j.1095-8312.1978.tb00013.x
Sokal RR and Oden NL (1978b). Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soci. 10: 229-249.
http://dx.doi.org/10.1111/j.1095-8312.1978.tb00014.x
Sokal RR, Jacquez GM and Wooten MC (1989). Spatial autocorrelation analysis of migration and selection. Genetics 121: 845-855.
PMid:2721935 PMCid:1203668
Tani N, Tomaru N, Tsumura Y, Araki M, et al. (1998). Genetic structure within a Japanese stone pine (Pinus pumila Regel) population on Mt. Aino-Dake in central Honshu, Japan. J. Plant Res. 111: 7-15.
http://dx.doi.org/10.1007/BF02507145
Torres E, Iriondo JM, Escudero A and Perez C (2003). Analysis of within-population spatial genetic structure in Antirrhinum microphyllum (Scrophulariaceae). Am. J. Bot. 90: 1688-1695.
http://dx.doi.org/10.3732/ajb.90.12.1688
PMid:21653345
Vornam B, Decarli N and Gailing O (2004). Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conser. Genet. 5: 561-570.
http://dx.doi.org/10.1023/B:COGE.0000041025.82917.ac
Warternberg D (1989). SAAP 4.3.: A Spatial Autocorrelation Analysis Program. Exeter Software, Setauket.
Wright S (1946). Isolation by distance under diverse systems of mating. Genetics 31: 39-59.
PMCid:1209315