Publications

Found 3 results
Filters: Author is X.R. Wang  [Clear All Filters]
2012
Q. Chen, Yu, H. W., Wang, X. R., Xie, X. L., Yue, X. Y., and Tang, H. R., An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.), vol. 11. pp. 1773-1782, 2012.
Abe S, Fujisawa T, Satake M and Ogata K (1972). Studies on SDS-phenol methods for extraction of rat liver nuclear RNA. I. Purity, recovery, and specific radioactivity of pulse labeled nuclear RNA obtained by SDS-phenol extraction under various conditions. J. Biochem. 72: 561-570. PMid:4673761   Almarza J, Morales S, Rincon L and Brito F (2006). Urea as the only inactivator of RNase for extraction of total RNA from plant and animal tissues. Anal. Biochem. 358: 143-145. http://dx.doi.org/10.1016/j.ab.2006.03.040 PMid:16979578   Bugos RC, Chiang VL, Zhang XH, Campbell ER, et al. (1995). RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques 19: 734-737. PMid:8588907   Chang S, Puryear J and Cairney J (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116. http://dx.doi.org/10.1007/BF02670468   Chomczynski P (2004). Reagents and Methods for Isolation of Purified RNA. US Patent 0233333.   Chomczynski P and Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. http://dx.doi.org/10.1016/0003-2697(87)90021-2   Chomczynski P and Sacchi N (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1: 581-585. http://dx.doi.org/10.1038/nprot.2006.83 PMid:17406285   Cuevas-Rodriguez EO, Yousef GG, Garcia-Saucedo PA, Lopez-Medina J, et al. (2010). Characterization of anthocyanins and proanthocyanidins in wild and domesticated Mexican blackberries (Rubus spp.). J. Agric. Food Chem. 58: 7458-7464. http://dx.doi.org/10.1021/jf101485r PMid:20507066   Fan-Chiang HJ and Wrolstad RE (2005). Anthocyanin pigment composition of blackberries. J. Food Sci. 70: C198-C202. http://dx.doi.org/10.1111/j.1365-2621.2005.tb07125.x   Fang G, Hammar S and Grumet R (1992). A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52-4, 56. PMid:1503775   Fort F, Hayoun L, Valls J, Canals JM, et al. (2008). A new and simple method for rapid extraction and isolation of high-quality RNA from grape (Vitis vinifera) berries. J. Sci. Food Agr. 88: 179-184. http://dx.doi.org/10.1002/jsfa.3066   Ghangal R, Raghuvanshi S and Chand SP (2009). Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol. Biochem. 47: 1113-1115. http://dx.doi.org/10.1016/j.plaphy.2009.09.004 PMid:19804984   Ghawana S, Paul A, Kumar H, Kumar A, et al. (2011). An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes 4: 85. http://dx.doi.org/10.1186/1756-0500-4-85 PMid:21443767 PMCid:3079660   Heath EM and Minnetonka M (1999). Low pH RNA Isolation Reagents, Method, and Kit. US Patent 5973137.   Jones CS, Iannetta PP, Woodhead M, Davies HV, et al. (1997). The isolation of RNA from raspberry (Rubus idaeus) fruit. Mol. Biotechnol. 8: 219-221. http://dx.doi.org/10.1007/BF02760775 PMid:9438256   Kansal R, Kuhar K, Verma I, Gupta RN, et al. (2008). Improved and convenient method of RNA isolation from polyphenols and polysaccharide rich plant tissues. Indian J. Exp. Biol. 46: 842-845. PMid:19245182   Liao Z, Chen M, Guo L, Gong Y, et al. (2004). Rapid isolation of high-quality total RNA from taxus and ginkgo. Prep. Biochem. Biotechnol. 34: 209-214. http://dx.doi.org/10.1081/PB-200026790 PMid:15461137   Liu JJ, Goh CJ, Loh CS, Liu P, et al. (1998). A method for isolation of total RNA from fruit tissues of banana. Plant Mol. Biol. Rep. 16: 87. http://dx.doi.org/10.1023/A:1007492421119   Perkins-Veazie P, Clark JR, Huber DJ and Baldwin EA (2000). Ripening physiology in "Navaho" thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J. Am. Soc. Hortic. Sci. 125: 357-363.   Rio DC, Ares M Jr, Hannon GJ and Nilsen TW (2010). Purification of RNA by SDS solubilization and phenol extraction. Cold Spring Harb. Protoc. 2010: db.   Robert EF Jr (2010). RNA Isolation Strategies, RNA Methodologies. 4th edn. Academic Press, San Diego.   Robertson N and Leek R (2006). Isolation of RNA from tumor samples: single-step guanidinium acid-phenol method. Methods Mol. Med. 120: 55-59. PMid:16491593   Rodrigues SM, Soares VL, de Oliveira TM, Gesteira AS, et al. (2007). Isolation and purification of RNA from tissues rich in polyphenols, polysaccharides, and pigments of annatto (Bixa orellana L.). Mol. Biotechnol. 37: 220-224. http://dx.doi.org/10.1007/s12033-007-0070-9 PMid:17952668   Smart M and Roden LC (2010). A small-scale RNA isolation protocol useful for high-throughput extractions from recalcitrant plants. S. Afr. J. Bot. 76: 375-379. http://dx.doi.org/10.1016/j.sajb.2010.01.002   Stafne ET (2003). A short retrospective of blackberries in Arkansas, AAES Res. Series 520. Hort. Stud.   Wang G, Wang G, Zhang X, Wang F, et al. (2012). Isolation of high quality RNA from cereal seeds containing high levels of starch. Phytochem. Anal. 23: 159-163. http://dx.doi.org/10.1002/pca.1337 PMid:21739496   Wang L and Stegemann JP (2010). Extraction of high quality RNA from polysaccharide matrices using cetyltrimethylam-monium bromide. Biomaterials 31: 1612-1618. http://dx.doi.org/10.1016/j.biomaterials.2009.11.024 PMid:19962190 PMCid:2813910   Wang X, Xiao H, Chen G, Zhao X, et al. (2011). Isolation of high-quality RNA from Reaumuria soongorica, a desert plant rich in secondary metabolites. Mol. Biotechnol. 48: 165-172. http://dx.doi.org/10.1007/s12033-010-9357-3 PMid:21136208   Wang XR, Tang HR, Fu HQ, Zhong BF, et al. (2008). Karyotypes of 15 introduced bramble cultivars (Rubus) (In Chinese). Sci. Silvae Sci. 44: 147-150.   Wu JY, Peng G, Li CQ, Lu LJ, et al. (2011). A new rapid and effective method for RNA isolation from litchi tissues of fruitlet and abscission zone (In Chinese). Acta Hort. Sin. 38: 1191-1196.
L. P. Zhang, Ma, B. Y., Han, F. X., Wan, H. L., Wu, J. P., Yu, L. H., Wang, X. R., and Zhu, J. Y., Molecular characterization and functional analysis of sheep thyroid transcription factor-1, vol. 11, pp. 2585-2597, 2012.
Anagnostou VK, Syrigos KN, Bepler G, Homer RJ, et al. (2009). Thyroid transcription factor 1 is an independent prognostic factor for patients with stage I lung adenocarcinoma. J. Clin. Oncol. 27: 271-278. http://dx.doi.org/10.1200/JCO.2008.17.0043 PMid:19064983   Apergis GA, Crawford N, Ghosh D, Steppan CM, et al. (1998). A novel nk-2-related transcription factor associated with human fetal liver and hepatocellular carcinoma. J. Biol. Chem. 273: 2917-2925. http://dx.doi.org/10.1074/jbc.273.5.2917 PMid:9446603   Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770 PMid:16301204   Bodmer R (1995). Heart development in Drosophila and its relationship to vertebrates. Trends Cardiovasc. Med. 5: 21-28. http://dx.doi.org/10.1016/1050-1738(94)00032-Q   Boggaram V (2009). Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin. Sci. 116: 27-35. http://dx.doi.org/10.1042/CS20080068 PMid:19037882   Butt SJ, Sousa VH, Fuccillo MV, Hjerling-Leffler J, et al. (2008). The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59: 722-732. http://dx.doi.org/10.1016/j.neuron.2008.07.031 PMid:18786356 PMCid:2562525   Cao Y, Vo T, Millien G, Tagne JB, et al. (2010). Epigenetic mechanisms modulate thyroid transcription factor 1-mediated transcription of the surfactant protein B gene. J. Biol. Chem. 285: 2152-2164. http://dx.doi.org/10.1074/jbc.M109.039172 PMid:19906647 PMCid:2804371   Carlsson P and Mahlapuu M (2002). Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250: 1-23. http://dx.doi.org/10.1006/dbio.2002.0780 PMid:12297093   Carré A, Szinnai G, Castanet M, Sura-Trueba S, et al. (2009). Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Hum. Mol. Genet. 18: 2266-2276. http://dx.doi.org/10.1093/hmg/ddp162 PMid:19336474   Damante G and Di Lauro R (1994). Thyroid-specific gene expression. Biochim. Biophys. Acta 1218: 255-266. http://dx.doi.org/10.1016/0167-4781(94)90176-7   Damante G, Fabbro D, Pellizzari L, Civitareale D, et al. (1994). Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res. 22: 3075-3083. http://dx.doi.org/10.1093/nar/22.15.3075 PMid:7915030 PMCid:310278   Damante G, Pellizzari L, Esposito G, Fogolari F, et al. (1996). A molecular code dictates sequence-specific DNA recognition by homeodomains. EMBO J. 15: 4992-5000. PMid:8890172 PMCid:452237   Damante G, Tell G and Di Lauro R (2001). A unique combination of transcription factors controls differentiation of thyroid cells. Prog. Nucleic Acid Res. Mol. Biol. 66: 307-356. http://dx.doi.org/10.1016/S0079-6603(00)66033-6   De Felice M and Di Lauro R (2004). Thyroid development and its disorders: genetics and molecular mechanisms. Endocr. Rev. 25: 722-746. http://dx.doi.org/10.1210/er.2003-0028 PMid:15466939   De Felice M, Damante G, Zannini M, Francis-Lang H, et al. (1995). Redundant domains contribute to the transcriptional activity of the thyroid transcription factor 1. J. Biol. Chem. 270: 26649-26656. http://dx.doi.org/10.1074/jbc.270.44.26649 PMid:7592890   Del Vecchio P, Carullo P, Barone G, Pagano B, et al. (2008). Conformational stability and DNA binding energetics of the rat thyroid transcription factor 1 homeodomain. Proteins 70: 748-760. http://dx.doi.org/10.1002/prot.21552 PMid:17729273   Dentice M, Luongo C, Elefante A, Ambrosio R, et al. (2005). Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells. Mol. Cell Biol. 25: 10171-10182. http://dx.doi.org/10.1128/MCB.25.22.10171-10182.2005 PMid:16260629 PMCid:1280265   Esposito G, Fogolari F, Damante G, Formisano S, et al. (1996). Analysis of the solution structure of the homeodomain of rat thyroid transcription factor 1 by 1H-NMR spectroscopy and restrained molecular mechanics. Eur. J. Biochem. 241: 101-113. http://dx.doi.org/10.1111/j.1432-1033.1996.0101t.x PMid:8898894   Gerber HP, Seipel K, Georgiev O, Hofferer M, et al. (1994). Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263: 808-811. http://dx.doi.org/10.1126/science.8303297 PMid:8303297   Guex N and Peitsch MC (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. http://dx.doi.org/10.1002/elps.1150181505 PMid:9504803   Gümral D, Nadalin L, Corazza A, Fogolari F, et al. (2008). Helix mobility and recognition function of the rat thyroid transcription factor 1 homeodomain - hints from 15N-NMR relaxation studies. FEBS J. 275: 435-448. http://dx.doi.org/10.1111/j.1742-4658.2007.06208.x PMid:18167145   Harvey RP (1996). NK-2 homeobox genes and heart development. Dev. Biol. 178: 203-216. http://dx.doi.org/10.1006/dbio.1996.0212 PMid:8812123   Joba W, Spitzweg C, Schriever K and Heufelder AE (1999). Analysis of human sodium/iodide symporter, thyroid transcription factor-1, and paired-box-protein-8 gene expression in benign thyroid diseases. Thyroid 9: 455-466. http://dx.doi.org/10.1089/thy.1999.9.455 PMid:10365677   Lee BJ, Cho GJ, Norgren RB Jr, Junier MP, et al. (2001). TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol. Cell Neurosci. 17: 107-126. http://dx.doi.org/10.1006/mcne.2000.0933 PMid:11161473   Losada A, Tovar JA, Xia HM, Diez-Pardo JA, et al. (2000). Down-regulation of thyroid transcription factor-1 gene expression in fetal lung hypoplasia is restored by glucocorticoids. Endocrinology 141: 2166-2173. http://dx.doi.org/10.1210/en.141.6.2166 PMid:10830305   Mastronardi C, Smiley GG, Raber J, Kusakabe T, et al. (2006). Deletion of the Ttf1 gene in differentiated neurons disrupts female reproduction without impairing basal ganglia function. J. Neurosci. 26: 13167-13179. http://dx.doi.org/10.1523/JNEUROSCI.4238-06.2006 PMid:17182767   Nobrega-Pereira S, Kessaris N, Du T, Kimura S, et al. (2008). Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59: 733-745. http://dx.doi.org/10.1016/j.neuron.2008.07.024 PMid:18786357 PMCid:2643060   Ojeda SR, Lomniczi A, Mastronardi C, Heger S, et al. (2006a). Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147: 1166-1174. http://dx.doi.org/10.1210/en.2005-1136 PMid:16373420   Ojeda SR, Roth C, Mungenast A, Heger S, et al. (2006b). Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts. Int. J. Androl. 29: 256-263. http://dx.doi.org/10.1111/j.1365-2605.2005.00619.x PMid:16466547   Romero C, Paredes A, Dissen GA and Ojeda SR (2002). Nerve growth factor induces the expression of functional FSH receptors in newly formed follicles of the rat ovary. Endocrinology 143: 1485-1494. http://dx.doi.org/10.1210/en.143.4.1485 PMid:11897707   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor, New York.   Schwede T, Kopp J, Guex N and Peitsch MC (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. http://dx.doi.org/10.1093/nar/gkg520 PMid:12824332 PMCid:168927   Shahab M, Mastronardi C, Seminara SB, Crowley WF, et al. (2005). Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc. Natl. Acad. Sci. U. S. A. 102: 2129-2134. http://dx.doi.org/10.1073/pnas.0409822102 PMid:15684075 PMCid:548549   Shu W, Yang H, Zhang L, Lu MM, et al. (2001). Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. J. Biol. Chem. 276: 27488-27497. http://dx.doi.org/10.1074/jbc.M100636200 PMid:11358962   Son YJ, Yun CH, Kim JG, Park JW, et al. (2009). Expression and role of TTF-1 in the rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun. 380: 559-563. http://dx.doi.org/10.1016/j.bbrc.2009.01.119 PMid:19285000   Tell G, Acquaviva R, Formisano S, Fogolari F, et al. (1999). Comparative stability analysis of the thyroid transcription factor 1 and Antennapedia homeodomains: evidence for residue 54 in controlling the structural stability of the recognition helix. Int. J. Biochem. Cell Biol. 31: 1339-1353. http://dx.doi.org/10.1016/S1357-2725(99)00047-3   Trueba SS, Auge J, Mattei G, Etchevers H, et al. (2005). PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J. Clin. Endocrinol. Metab. 90: 455-462. http://dx.doi.org/10.1210/jc.2004-1358 PMid:15494458   Watada H, Mirmira RG, Kalamaras J and German MS (2000). Intramolecular control of transcriptional activity by the NK2-specific domain in NK-2 homeodomain proteins. Proc. Natl. Acad. Sci. U. S. A. 97: 9443-9448. http://dx.doi.org/10.1073/pnas.97.17.9443 PMid:10944215 PMCid:16883   Yan C, Naltner A, Conkright J and Ghaffari M (2001). Protein-protein interaction of retinoic acid receptor alpha and thyroid transcription factor-1 in respiratory epithelial cells. J. Biol. Chem. 276: 21686-21691. PMid:11274148   Zhou B, Zhong Q, Minoo P, Li C, et al. (2008). Foxp2 inhibits Nkx2.1-mediated transcription of SP-C via interactions with the Nkx2.1 homeodomain. Am. J. Respir. Cell Mol. Biol. 38: 750-758 http://dx.doi.org/10.1165/rcmb.2007-0350OC PMid:18239190 PMCid:2396252