Publications

Found 1 results
Filters: Author is V. Carpentieri-Pipolo  [Clear All Filters]
2012
S. M. B. Cação, Leite, T. F., Budzinski, I. G. F., Santos, T. Bdos, Scholz, M. B. S., Carpentieri-Pipolo, V., Domingues, D. S., Vieira, L. G. E., and Pereira, L. F. P., Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L., vol. 11, pp. 3186-3197, 2012.
Ali ZM, Chin L-H and Lazan H (2004). A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Sci. 167: 317-327. http://dx.doi.org/10.1016/j.plantsci.2004.03.030   Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917   Brummell DA, Dal Cin V, Crisosto CH and Labavitch JM (2004). Cell wall metabolism during maturation, ripening and senescence of peach fruit. J. Exp. Bot. 55: 2029-2039. http://dx.doi.org/10.1093/jxb/erh227 PMid:15286150   Budzinski IG, Santos TB, Sera T, Pot D, et al. (2011). Expression patterns of three alpha-expansin isoforms in Coffea arabica during fruit development. Plant Biol. 13: 462-471. http://dx.doi.org/10.1111/j.1438-8677.2010.00400.x PMid:21489097   Cação SMB, Galvão RM, Pereira LFP and Vieira LGE (2003). Identificação e Caracterização de Genes de Poligalacturonase de Coffea arabica. In: Anais do III Simpósio de Pesquisa dos Cafés do Brasil Embrapa Café, Porto Seguro, 98-99.   De Castro RD and Marraccini P (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Braz. J. Plant Physiol. 18: 175-199. http://dx.doi.org/10.1590/S1677-04202006000100013   Derbyshire P, McCann MC and Roberts K (2007). Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol. 7: 31. http://dx.doi.org/10.1186/1471-2229-7-31 PMid:17572910 PMCid:1913053   Dorokhov YL, Skurat EV, Frolova OY, Gasanova TV, et al. (2006). Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Lett. 580: 3329-3334. http://dx.doi.org/10.1016/j.febslet.2006.04.090 PMid:16709413   Draye M and Van Cutsem P (2008). Pectin methylesterases induce an abrupt increase of acidic pectin during strawberry fruit ripening. J. Plant Physiol. 165: 1152-1160. http://dx.doi.org/10.1016/j.jplph.2007.10.006 PMid:18160124   Geromel C, Ferreira LP, Guerreiro SM, Cavalari AA, et al. (2006). Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J. Exp. Bot. 57: 3243-3258. http://dx.doi.org/10.1093/jxb/erl084 PMid:16926239   Giovane A, Servillo L, Balestrieri C, Raiola A, et al. (2004). Pectin methylesterase inhibitor. Biochim. Biophys. Acta 1696: 245-252. http://dx.doi.org/10.1016/j.bbapap.2003.08.011 PMid:14871665   Jolie RP, Duvetter T, Van Loey AM and Hendrickx ME (2010). Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr. Res. 345: 2583-2595. http://dx.doi.org/10.1016/j.carres.2010.10.002 PMid:21047623   Kertesz ZI (1955). Pectic Enzymes. In: Methods of Enzymology (Clowick SP and Kaplan NO, eds.). Academic Press, New York, 158. http://dx.doi.org/10.1016/0076-6879(55)01022-7   Kim HB, Jun S-S, Choe S, Cho JY, et al. (2010). Identification of differentially expressed genes from male and female flowers of kiwifruit. J. Biotechnol. 9: 6684-6694.   Koch JL and Nevins DJ (1989). Tomato fruit cell wall: I. Use of purified tomato polygalacturonase and pectinmethylesterase to identify developmental changes in pectins. Plant Physiol. 91: 816-822. http://dx.doi.org/10.1104/pp.91.3.816 PMid:16667142 PMCid:1062081   Körner B, Zimmerman G and Berk Z (1980). Orange pectinesterase: purification, properties and effects on cloud stability. J. Food Sci. 45: 1203-1206. http://dx.doi.org/10.1111/j.1365-2621.1980.tb06521.x   Lazan H, Selamat MK and Ali ZM (1995). Beta-galactosidase, polygalacturonase and pectinesterase in differential softening and cell wall modification during papaya fruit ripening. Physiol. Plant. 95: 106-112. http://dx.doi.org/10.1111/j.1399-3054.1995.tb00815.x   Markovic O and Janecek S (2004). Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr. Res. 339: 2281-2295. http://dx.doi.org/10.1016/j.carres.2004.06.023 PMid:15337457   Micheli F (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 6: 414-419. http://dx.doi.org/10.1016/S1360-1385(01)02045-3   Micheli F, Sundberg B, Goldberg R and Richard L (2000). Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol. 124: 191-199. http://dx.doi.org/10.1104/pp.124.1.191 PMid:10982434 PMCid:59134   Mondego JM, Vidal RO, Carazzolle MF, Tokuda EK, et al. (2011). An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol. 11: 30. http://dx.doi.org/10.1186/1471-2229-11-30 PMid:21303543 PMCid:3045888   Montavon P, Duruz E, Rumo G and Pratz G (2003). Evolution of green coffee protein profiles with maturation and relationship to coffee cup quality. J. Agric. Food Chem. 51: 2328-2334. http://dx.doi.org/10.1021/jf020831j PMid:12670177   Paull RE, Gross K and Qiu YX (1999). Changes in papaya cell walls during fruit ripening. Postharvest Biol. Technol. 16: 79-89. http://dx.doi.org/10.1016/S0925-5214(98)00100-8   Pereira LFP, Galvão RM, Kobayashi AK, Cação SMB, et al. (2005). Ethylene production and acc-oxidase gene expression during fruit ripening of Coffea arabica L. Braz. J. Plant Physiol. 17: 283-289. http://dx.doi.org/10.1590/S1677-04202005000300002   Pilnik W and Voragen AGJ (1970). Pectic Substances and Other Uronides. In: The Biochemistry of Fruits and Their (Hulme AC, ed.). Products Academic Press, London and New York, 53-87.   Pimenta CJ, Chagas SJR and Costa L (2000). Pectinas e enzimas pectinolíticas em café (Coffea arábica) colhido em quatro estádios de maturação. Cienc. Agrotecnol. 24: 1079-1183.   Prasanna V, Prabha TN and Tharanathan RN (2007). Fruit ripening phenomena-an overview. Crit. Rev. Food Sci. Nutr. 47: 1-19. http://dx.doi.org/10.1080/10408390600976841 PMid:17364693   Redgwell RJ, Melton LD and Brasch DJ (1990). Cell wall changes in Kiwifruit following post harvest ethylene treatment. Phytochemistry 29: 399-407. http://dx.doi.org/10.1016/0031-9422(90)85087-V   Ren C and Kermode AR (2000). An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol. 124: 231-242. http://dx.doi.org/10.1104/pp.124.1.231 PMid:10982438 PMCid:59138   Rena AB, Nacif AP, Gontijo PTG and Pereira AA (1996). Fisiologia do Cafeeiro em Plantios Adensados. In: Simpósio Internacional Sobre Café Adensado (Caramori PH, Androcioli A, Liberal EG, Chaves JCD, et al., eds.). Londrina, 72-85.   Ribas AF, Pereira LFP and Vieira LGE (2006). Genetic transformation of coffee. Braz. J. Plant Physiol. 18: 83-94. http://dx.doi.org/10.1590/S1677-04202006000100007   Roberts JA, Whitelaw CA, Gonzalez-Carranza ZH and McManus MT (2000). Cell separation process in plants: models, mechanisms and manipulations. Ann. Bot. 86: 223-235. http://dx.doi.org/10.1006/anbo.2000.1203   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.   Siedlecka A, Wiklund S, Péronne M-A, Micheli F, et al. (2008). Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol. 146: 554-565. http://dx.doi.org/10.1104/pp.107.111963 PMid:18065553 PMCid:2245829   Sobry S, Havelange A and Van Cutsem P (2005). Immunocytochemistry of pectins in shoot apical meristems: consequences for intercellular adhesion. Protoplasma 225: 15-22. http://dx.doi.org/10.1007/s00709-005-0089-3 PMid:15868209   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Tieman DM and Handa AK (1994). Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol. 106: 429-436. PMid:12232340 PMCid:159547   Vieira LGE, Andrade AC, Colombo CA, Moraes AHA, et al. (2006). Brazilian coffee genome project: an EST-based genomic resource. Braz. J. Plant Physiol. 18: 95-108. http://dx.doi.org/10.1590/S1677-04202006000100008   Wakabayashi K, Chun JP and Huber DJ (2000). Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiol. Plant. 108: 345-352.