Found 6 results
Filters: Author is F. Shi  [Clear All Filters]
C. Qiu, Peng, W. K., Shi, F., and Zhang, T., Bottom-up assembly of RNA nanoparticles containing phi29 motor pRNA to silence the asthma STAT5b gene, vol. 11, pp. 3236-3245, 2012.
Castanotto D and Rossi JJ (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature 457: 426-433. PMid:19158789 PMCid:2702667   Chen C, Sheng S, Shao Z and Guo P (2000). A dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J. Biol. Chem. 275: 17510-17516. PMid:10748150   Dorsett Y and Tuschl T (2004). siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug. Discov. 3: 318-329. PMid:15060527   Elbashir SM, Lendeckel W and Tuschl T (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15: 188-200. PMid:11157775 PMCid:312613   Guo P (2010). The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5: 833-842. PMid:21102465 PMCid:3149862   Guo S, Tschammer N, Mohammed S and Guo P (2005). Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther. 16: 1097-1109. PMid:16149908 PMCid:2837361   Kraus E, James W and Barclay AN (1998). Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol. 160: 5209-5212. PMid:9605115   Lee TJ, Schwartz C and Guo P (2009). Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann. Biomed. Eng. 37: 2064-2081. PMid:19495981 PMCid:2855900   Maes T, Tournoy KG and Joos GF (2011). Gene therapy for allergic airway diseases. Curr. Allergy Asthma Rep. 11: 163-172. PMid:21243453   North ML, Khanna N, Marsden PA, Grasemann H, et al. (2009). Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 296: L911-L920. PMid:19286931   Shu D, Huang LP, Hoeprich S and Guo P (2003). Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J. Nanosci. Nanotechnol. 3: 295-302. PMid:14598442   Shu D, Moll WD, Deng Z, Mao C, et al. (2004). Bottom-up Assembly of RNA Arrays and Superstructures as Potential Parts in Nanotechnology. Nano Lett. 4: 1717-1723. PMid:21171616 PMCid:3010238   Shu Y, Shu D, Diao Z, Shen G, et al. (2009). Fabrication of Polyvalent Therapeutic RNA Nanoparticles for Specific Delivery of siRNA, Ribozyme and Drugs to Targeted Cells for Cancer Therapy. IEEE NIH Life Sci. Syst. Appl. Workshop 2009: 9-12.   Tarapore P, Shu Y, Guo P and Ho SM (2011). Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol. Ther. 19: 386-394. PMid:21063391 PMCid:3034850   Zhang HM, Su Y, Guo S, Yuan J, et al. (2009). Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res. 83: 307-316. PMid:19616030   Zhou J, Shu Y, Guo P, Smith DD, et al. (2011). Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54: 284-294. PMid:21256218 PMCid:3107903   Zhu J (2010). Transcriptional regulation of Th2 cell differentiation. Immunol. Cell Biol. 88: 244-249. PMid:20065998 PMCid:3477614   Zhu J, Cote-Sierra J, Guo L and Paul WE (2003). Stat5 activation plays a critical role in Th2 differentiation. Immunity 19: 739-748.