Publications

Found 2 results
Filters: Author is S.W. Weng  [Clear All Filters]
2012
M. C. Chien, Huang, W. T., Wang, P. W., Liou, C. W., Lin, T. K., Hsieh, C. J., and Weng, S. W., Role of mitochondrial DNA variants and copy number in diabetic atherogenesis, vol. 11, pp. 3339-3348, 2012.
Allen JF and Raven JA (1996). Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J. Mol. Evol. 42: 482-492. http://dx.doi.org/10.1007/BF02352278 PMid:8662000   Anderson S, Bankier AT, Barrell BG, de Bruijn MH, et al. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457-465. http://dx.doi.org/10.1038/290457a0 PMid:7219534   Brownlee M (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820. http://dx.doi.org/10.1038/414813a PMid:11742414   Chappey O, Dosquet C, Wautier MP and Wautier JL (1997). Advanced glycation end products, oxidant stress and vascular lesions. Eur. J. Clin. Invest. 27: 97-108. http://dx.doi.org/10.1046/j.1365-2362.1997.710624.x PMid:9061302   Croteau DL and Bohr VA (1997). Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272: 25409-25412. http://dx.doi.org/10.1074/jbc.272.41.25409 PMid:9325246   Du X, Matsumura T, Edelstein D, Rossetti L, et al. (2003). Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest. 112: 1049-1057. PMid:14523042 PMCid:198524   Gutierrez J, Ballinger SW, Darley-Usmar VM and Landar A (2006). Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ. Res. 99: 924-932. http://dx.doi.org/10.1161/01.RES.0000248212.86638.e9 PMid:17068300   Lee HC, Yin PH, Lu CY, Chi CW, et al. (2000). Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem. J. 348: 425-432. http://dx.doi.org/10.1042/0264-6021:3480425 PMid:10816438 PMCid:1221082   Lee HC, Yin PH, Chi CW and Wei YH (2002). Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 9: 517-526. http://dx.doi.org/10.1007/BF02254978 PMid:12372989   Lu J, Li Z, Zhu Y, Yang A, et al. (2010). Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mitochondrion 10: 380-390. http://dx.doi.org/10.1016/j.mito.2010.01.007 PMid:20100600 PMCid:2874659   Madamanchi NR and Runge MS (2007). Mitochondrial dysfunction in atherosclerosis. Circ. Res. 100: 460-473. http://dx.doi.org/10.1161/01.RES.0000258450.44413.96 PMid:17332437   Mercer JR, Cheng KK, Figg N, Gorenne I, et al. (2010). DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res. 107: 1021-1031. http://dx.doi.org/10.1161/CIRCRESAHA.110.218966 PMid:20705925 PMCid:2982998   Morino K, Petersen KF, Dufour S, Befroy D, et al. (2005). Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J. Clin. Invest. 115: 3587-3593. http://dx.doi.org/10.1172/JCI25151 PMid:16284649 PMCid:1280967   Nishikawa T, Edelstein D, Du XL, Yamagishi S, et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-790. http://dx.doi.org/10.1038/35008121 PMid:10783895   Petersen KF, Dufour S, Befroy D, Garcia R, et al. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350: 664-671. http://dx.doi.org/10.1056/NEJMoa031314 PMid:14960743 PMCid:2995502   Puddu P, Puddu GM, Galletti L, Cravero E, et al. (2005). Mitochondrial dysfunction as an initiating event in atherogenesis: a plausible hypothesis. Cardiology 103: 137-141. http://dx.doi.org/10.1159/000083440 PMid:15665536   Rosen P, Nawroth PP, King G, Moller W, et al. (2001). The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17: 189-212. http://dx.doi.org/10.1002/dmrr.196 PMid:11424232   Ross R (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801-809. http://dx.doi.org/10.1038/362801a0 PMid:8479518   Sawano T, Tanaka M, Ohno K, Yoneda M, et al. (1996). Mitochondrial DNA mutations associated with the 11778 mutation in Leber's disease. Biochem. Mol. Biol. Int. 38: 693-700. PMid:8728098   Seneca S, Lissens W, Liebaers I, van den Bergh P, et al. (1998). Pitfalls in the diagnosis of mtDNA mutations. J. Med. Genet. 35: 963-964. http://dx.doi.org/10.1136/jmg.35.11.963 PMid:9832049 PMCid:1051498   Shtilbans A, El-Schahawi M, Malkin E, Shanske S, et al. (1999). A novel mutation in the mitochondrial DNA transfer ribonucleic acidAsp gene in a child with myoclonic epilepsy and psychomotor regression. J. Child Neurol. 14: 610-613. http://dx.doi.org/10.1177/088307389901400910 PMid:10488907   Tanaka N, Goto Y, Akanuma J, Kato M, et al. (2010). Mitochondrial DNA variants in a Japanese population of patients with Alzheimer's disease. Mitochondrion 10: 32-37. http://dx.doi.org/10.1016/j.mito.2009.08.008 PMid:19703591   Tuppen HA, Fattori F, Carrozzo R, Zeviani M, et al. (2008). Further pitfalls in the diagnosis of mtDNA mutations: homoplasmic mt-tRNA mutations. J. Med. Genet. 45: 55-61. http://dx.doi.org/10.1136/jmg.2007.051185 PMid:18178636   Wong LJ (2007). Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 36: 279-293. http://dx.doi.org/10.1002/mus.20807 PMid:17503499