Publications

Found 1 results
Filters: Author is Z.M. Yuan  [Clear All Filters]
2012
J. L. Li, Wang, L. F., Wang, H. Y., Bai, L. Y., and Yuan, Z. M., High-accuracy splice site prediction based on sequence component and position features, vol. 11, pp. 3432-3451, 2012.
Asa BH, Cheng SO and Sonnenburg S (2008). Support vector machines and kernels for computational biology. PLoS 4: 1-10.   Baten AK, Chang BC, Halgamuge SK and Li J (2006). Splice site identification using probabilistic parameters and SVM classification. BMC Bioinformatics 7 (Suppl 5): S15. http://dx.doi.org/10.1186/1471-2105-7-S5-S15 PMid:17254299 PMCid:1764471   Baten AK, Halgamuge SK, Chang B and Wickramarachchi N (2007). Biological sequence data preprocessing for classification: A case study in splice site identification. Adv. Neural Netw. 4492: 1221-1230.   Baten AK, Halgamuge SK and Chang BC (2008). Fast splice site detection using information content and feature reduction. BMC Bioinformatics 9 (Suppl 12): S8. http://dx.doi.org/10.1186/1471-2105-9-S12-S8 PMid:19091031 PMCid:2638148   Burset M, Seledtsov IA and Solovyev VV (2000). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 28: 4364-4375. http://dx.doi.org/10.1093/nar/28.21.4364 PMid:11058137 PMCid:113136   Cai D, Delcher A, Kao B and Kasif S (2000). Modeling splice sites with Bayes networks. Bioinformatics 16: 152-158. http://dx.doi.org/10.1093/bioinformatics/16.2.152 PMid:10842737   Chang CC and Lin CJ (2011). LIBSVM: a library for support vector machines. Trans. Intell. Syst. Technol. 2: 278-289.   Chen TM, Lu CC and Li WH (2005). Prediction of splice sites with dependency graphs and their expanded Bayesian networks. Bioinformatics 21: 471-482. http://dx.doi.org/10.1093/bioinformatics/bti025 PMid:15374869   Crooks GE, Hon G, Chandonia JM and Brenner SE (2004). WebLogo: a sequence logo generator. Genome Res. 14: 1188- 1190. http://dx.doi.org/10.1101/gr.849004 PMid:15173120 PMCid:419797   Davis J and Goadrich M (2006). The Relationship Between Precision-Recall and ROC Curves. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), New York, 233-240. http://dx.doi.org/10.1145/1143844.1143874   Durbin R, Eddy S, Krogh A and Mitchison G (1998). Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids Cambridge. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511790492   Fawcett T (2003). ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Technical Report HPL- 2003-4, HP Laboratories, Palo Alto.   Kahn AB, Ryan MC, Liu H, Zeeberg BR, et al. (2007). SpliceMiner: a high-throughput database implementation of the NCBI evidence viewer for microarray splice variant analysis. BMC Bioinformatics 8: 75. http://dx.doi.org/10.1186/1471-2105-8-75 PMid:17338820 PMCid:1839109   Mareshi SA, Eslahchi C and Pezechk H (2008). Impact of RNA structure on the prediction of donor and acceptor splice sites. BMC Bioinformatics 7: 297. http://dx.doi.org/10.1186/1471-2105-7-297 PMid:16772025 PMCid:1526458   Muller KR, Mika S and Ratsch G (2001). An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12: 181-201. http://dx.doi.org/10.1109/72.914517 PMid:18244377   Pertea M, Lin X and Salzberg SL (2001). GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 29: 1185-1190. http://dx.doi.org/10.1093/nar/29.5.1185 PMid:11222768 PMCid:29713   Pollastro P and Rampone S (2002). HS3D, a dataset of Homo sapiens splice regions, and its extraction procedure from a major public database. Int. J. Mod. Phys. C 13: 1105-1117. http://dx.doi.org/10.1142/S0129183102003796   Rätsch G and Sonnenburg S (2004). Accurate Splice Site Detection for Caenorhabditis Elegans. In: Kernel Methods in Computational Biology (Schölkopf KT and Vert JP, eds.). MIT Press, Cambridge.   Rätsch G, Sonnenburg S and Schölkopf B (2005). RASE: recognition of alternatively spliced exons in C. elegans. Bioinformatics 21: i369-i377. http://dx.doi.org/10.1093/bioinformatics/bti1053 PMid:15961480   Rätsch G, Sonnenburg S, Srinivasan J, Witte H, et al. (2007). Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Comput. Biol. 3: e20. http://dx.doi.org/10.1371/journal.pcbi.0030020 PMid:17319737 PMCid:1808025   Reese MG, Eeckman F, Kupl D and Haussler D (1997). Improved splice site detection in Genie. J. Comp. Biol. 4: 311-324. http://dx.doi.org/10.1089/cmb.1997.4.311 PMid:9278062   Schneider TD and Stephens RM (1990). Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097-6100. http://dx.doi.org/10.1093/nar/18.20.6097 PMid:2172928 PMCid:332411   Sonnenburg S, Schweikert G, Philips P, Behr J, et al. (2007). Accurate splice site prediction using support vector machines. BMC Bioinformatics 8 (Suppl 10): S7. http://dx.doi.org/10.1186/1471-2105-8-S10-S7 PMid:18269701 PMCid:2230508   Staden R (1984). Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res. 12: 505-519. http://dx.doi.org/10.1093/nar/12.1Part2.505 PMid:6364039 PMCid:321067   Sun ZX, Sang LJ and Ju LN (2008). Splice site prediction based on splicing information and motif sequences character. Chin. Sci. Bull. 53: 2298-2306.   Tavares LG, Lopes HS and Lima CRE (2009). Evaluation of weight matrix models in the splice junction recognition problem. Bioinform. Biomed. Workshop 1: 14-19.   Vapnik VN (1995). The Nature of Statistical Learning Theory. Springer Verlag, New York. PMid:8555380   Wang K, Ussery DW and Brunak S (2009). Analysis and prediction of gene splice sites in four Aspergillus genomes. Fungal Genet. Biol. 4: 14-18. http://dx.doi.org/10.1016/j.fgb.2008.09.010 PMid:18948220   Zhang QW, Peng QK and Xu T (2009). DNA splice site sequences clustering method for conservativeness analysis. Prog. Nat. Sci. 19: 511-516. http://dx.doi.org/10.1016/j.pnsc.2008.06.021   Zhang QW, Peng QK and Zhang Q (2010). Splice sites prediction of human genome using length-variable Markov model and feature selection. Expert Syst. Appl. 37: 2771-2782. http://dx.doi.org/10.1016/j.eswa.2009.09.014   Zhang Y, Chu CH and Chen YX (2006). Splice site prediction using support vector machines with a Beyes kernel. Expert Syst. Appl. 30: 73-81. http://dx.doi.org/10.1016/j.eswa.2005.09.052   Zien A, Rätsch G and Mika S (2000). Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16: 799-19. http://dx.doi.org/10.1093/bioinformatics/16.9.799 PMid:11108702