Publications

Found 6 results
Filters: Author is Y.P. Yuan  [Clear All Filters]
2012
Y. Wu, Zou, H. D., Cheng, H., Zhao, C. Y., Sun, L. F., Su, S. Z., Li, S. P., and Yuan, Y. P., Cloning and characterization of a β-amyrin synthase gene from the medicinal tree Aralia elata (Araliaceae), vol. 11, pp. 2301-2314, 2012.
Abe I and Prestwich GD (1995). Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231-234. http://dx.doi.org/10.1007/BF02537826 PMid:7791531   Abe I, Rohmer M and Prestwich GD (1993). Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189-2206. http://dx.doi.org/10.1021/cr00022a009   Basyuni M, Oku H, Tsujimoto E, Kinjo K, et al. (2007). Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae. FEBS J. 274: 5028-5042. http://dx.doi.org/10.1111/j.1742-4658.2007.06025.x PMid:17803686   Cammareri M, Consiglio MF, Pecchia P, Corea G, et al. (2008). Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Sci. 175: 255-261. http://dx.doi.org/10.1016/j.plantsci.2008.04.004   Chung CK and Jung ME (2003). Ethanol fraction of Aralia elata Seemann enhances antioxidant activity and lowers serum lipids in rats when administered with benzo(a)pyrene. Biol. Pharm. Bull. 26: 1502-1504. http://dx.doi.org/10.1248/bpb.26.1502 PMid:14519964   Haralampidis K, Bryan G, Qi X, Papadopoulou K, et al. (2001). A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. U. S. A. 98: 13431-13436. http://dx.doi.org/10.1073/pnas.231324698 PMid:11606766 PMCid:60888   Hayashi H, Huang P, Kirakosyan A, Inoue K, et al. (2001). Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol. Pharm. Bull. 24: 912-916. http://dx.doi.org/10.1248/bpb.24.912 PMid:11510484   Hostettmann K and Marston A (1995). Saponins. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511565113   Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K and Osbourn AE (2003). Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51: 731-743. http://dx.doi.org/10.1023/A:1022519709298 PMid:12683345   Kajikawa M, Yamato KT, Fukuzawa H, Sakai Y, et al. (2005). Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry 66: 1759-1766. http://dx.doi.org/10.1016/j.phytochem.2005.05.021 PMid:16005035   Kim JS, Shim SH, Chae S, Han SJ, et al. (2005). Saponins and other constituents from the leaves of Aralia elata. Chem. Pharm. Bull. 53: 696-700. http://dx.doi.org/10.1248/cpb.53.696   Kim OK, Lee EB and Kang SS (1993). Antihyperglycemic constituent of Aralia elata root bark. (II). Isolation and action of the constituents. Saengyak Hakhoechi 24: 219-222.   Kushiro T, Shibuya M and Ebizuka Y (1998a). Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238-244. http://dx.doi.org/10.1046/j.1432-1327.1998.2560238.x PMid:9746369   Kushiro T, Shibuya M and Ebizuka Y (1998b). Towards Natural Medicine Research in the 21st Century. In: Excerpta Medica International Congress Series (Ageta H, Aimi N, Ebizuka Y and Honda G, eds.). Elsevier Science, Amsterdam, 421-428.   Kushiro T, Shibuya M, Masuda K and Ebizuka Y (2000). Mutational studies on triterpene synthases: engineering lupeol synthase into β-amyrin synthase. J. Am. Chem. Soc. 122: 6816-6824. http://dx.doi.org/10.1021/ja0010709   Lee JH, Ha YW, Jeong CS, Kim YS, et al. (2009). Isolation and tandem mass fragmentations of an anti-inflammatory compound from Aralia elata. Arch. Pharm. Res. 32: 831-840. http://dx.doi.org/10.1007/s12272-009-1603-5 PMid:19557359   Li L, Song SJ, Li LZ, Liang ZX, et al. (2006). Chemical constituents of the buds of Aralia elata (Miq.) Seem. (III). J. Shenyang Pharm. Univ. 23: 495-498.   Li L, Song SJ, Liang ZX and Xu SX (2007). A new triterpenoidal saponin from the buds of Aralia elata (Miq.). Seem. Asian. J. Tradit. Med. 2: 1-4.   Liu Y, Cai Y, Zhao Z, Wang J, et al. (2009). Cloning and Functional Analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM. Biol. Pharm. Bull. 32: 818-824. http://dx.doi.org/10.1248/bpb.32.818 PMid:19420748   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, et al. (2007). An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. J. Am. Chem. Soc. 129: 11213-11222. http://dx.doi.org/10.1021/ja073133u PMid:17705488   Meesapyodsuk D, Balsevich J, Reed DW and Covello PS (2007). Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol. 143: 959-969. http://dx.doi.org/10.1104/pp.106.088484 PMid:17172290 PMCid:1803722   Morita M, Shibuya M, Kushiro T, Masuda K, et al. (2000). Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267: 3453-3460. http://dx.doi.org/10.1046/j.1432-1327.2000.01357.x PMid:10848960   New Medical College of Jiangsu (1977). Dictionary of Chinese Materia Medica. Shanghai Scientific and Technological Publishing, Shanghai.   Nhiem NX, Lim HY, Kiem PV, Minh CV, et al. (2011). Oleanane-type triterpene saponins from the bark of Aralia elata and their NF-kappaB inhibition and PPAR activation signal pathway. Bioorg. Med. Chem. Lett. 21: 6143-6147. http://dx.doi.org/10.1016/j.bmcl.2011.08.024 PMid:21889336   Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. PMid:8902363   Phillips DR, Rasbery JM, Bartel B and Matsuda SP (2006). Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9: 305-314. http://dx.doi.org/10.1016/j.pbi.2006.03.004 PMid:16581287   Poralla K, Hewelt A, Prestwich GD, Abe I, et al. (1994). A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157-158. http://dx.doi.org/10.1016/0968-0004(94)90276-3   Saito S, Ebashi J, Sumita S, Furumoto T, et al. (1993). Comparison of cytoprotective effects of saponins isolated from leaves of Aralia elata Seem. (Araliaceae) with synthesized bisdesmosides of oleanoic acid and hederagenin on carbon tetrachloride-induced hepatic injury. Chem. Pharm. Bull. 41: 1395-1401. http://dx.doi.org/10.1248/cpb.41.1395   Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257. http://dx.doi.org/10.1016/j.plantsci.2005.08.027   Scholz M, Lipinski M, Leupold M, Luftmann H, et al. (2009). Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry 70: 517-522. http://dx.doi.org/10.1016/j.phytochem.2009.01.018 PMid:19282005   Shibuya M, Katsube Y, Otsuka M, Zhang H, et al. (2009). Identification of a product specific β-amyrin synthase from Arabidopsis thaliana. Plant Physiol. Biochem. 47: 26-30. http://dx.doi.org/10.1016/j.plaphy.2008.09.007 PMid:18977664   Song SJ, Nakamura N, Ma CM, Hattori M, et al. (2001). Five saponins from the root bark of Aralia elata. Phytochemistry 56: 491-497. http://dx.doi.org/10.1016/S0031-9422(00)00379-4   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Yendo AC, de Costa F, Gosmann G and Fett-Neto AG (2010). Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields. Mol. Biotechnol. 46: 94-104. http://dx.doi.org/10.1007/s12033-010-9257-6 PMid:20204713   Yoshikawa M, Yoshizumi S, Ueno T, Matsuda H, et al. (1995). Medicinal foodstuffs. I. Hypoglycemic constituents from a garnish foodstuff "taranome", the young shoot of Aralia elata SEEM.: elatosides G, H, I, J, and K. Chem. Pharm. Bull. 43: 1878-1882. http://dx.doi.org/10.1248/cpb.43.1878   Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996a). Bioactive saponins and glycosides. VI. Elatosides A and B, potent inhibitors of ethanol absorption, from the bark of Aralia elata SEEM. (Araliaceae): the structure-requirement in oleanolic acid glucuronide-saponins for the inhibitory activity. Chem. Pharm. Bull. 44: 1915-1922. http://dx.doi.org/10.1248/cpb.44.1915   Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996b). Bioactive saponins and glycosides. VII. On the hypoglycemic principles from the root cortex of Aralia elata Seem.: structure related hypoglycemic activity of oleanolic acid oligoglycoside. Chem. Pharm. Bull. 44: 1923-1927. http://dx.doi.org/10.1248/cpb.44.1923   Zhang H, Shibuya M, Yokota S and Ebizuka Y (2003). Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol. Pharm. Bull. 26: 642-650. http://dx.doi.org/10.1248/bpb.26.642 PMid:12736505   Zhang M, Liu G, Tang S, Song S, et al. (2006). Effect of five triterpenoid compounds from the buds of Aralia elata on stimulus-induced superoxide generation, tyrosyl phosphorylation and translocation of cytosolic compounds to the cell membrane in human neutrophils. Planta Med. 72: 1216-1222. http://dx.doi.org/10.1055/s-2006-951679 PMid:17021995
X. H. Shan, Li, Y. D., Liu, X. M., Wu, Y., Zhang, M. Z., Guo, W. L., Liu, B., and Yuan, Y. P., Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP, vol. 11, pp. 2749-2759, 2012.
Ashikawa I (2001). Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol. Biol. 45: 31-39. http://dx.doi.org/10.1023/A:1006457321781 PMid:11247604   Cervera MT, Ruiz-Garcia L and Martinez-Zapater JM (2002). Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268: 543-552. http://dx.doi.org/10.1007/s00438-002-0772-4 PMid:12471452   Choi CS and Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics 277: 589-600. http://dx.doi.org/10.1007/s00438-007-0209-1 PMid:17273870   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Herrera CM and Bazaga P (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187: 867-876. http://dx.doi.org/10.1111/j.1469-8137.2010.03298.x PMid:20497347   Kalisz S and Purugganan MD (2004). Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol. 19: 309-314. http://dx.doi.org/10.1016/j.tree.2004.03.034 PMid:16701276   Keyte AL, Percifield R, Liu B and Wendel JF (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered. 97: 444-450. http://dx.doi.org/10.1093/jhered/esl023 PMid:16987937   Li YD, Chu ZZ, Liu XG, Jing HC, et al. (2010). A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 52: 1036-1042. http://dx.doi.org/10.1111/j.1744-7909.2010.01001.x PMid:21106003   Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, et al. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5: e10326. http://dx.doi.org/10.1371/journal.pone.0010326 PMid:20436669 PMCid:2859934   Lukens LN and Zhan S (2007). The plant genome's methylation status and response to stress: implications for plant improvement. Curr. Opin. Plant Biol. 10: 317-322. http://dx.doi.org/10.1016/j.pbi.2007.04.012 PMid:17468039   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Miller MP (1997). Tools for Population Genetic Analyses (TFPGA) v. 1.3: A Windows Program for the Analysis of Allozyme and Molecular Genetic Data. Department of Biological Sciences, Northern Arizona University, Phoenix.   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Papa R and Gepts P (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor. Appl. Genet. 106: 239-250. PMid:12582849   Rapp RA and Wendel JF (2005). Epigenetics and plant evolution. New Phytol. 168: 81-91. http://dx.doi.org/10.1111/j.1469-8137.2005.01491.x PMid:16159323   Richards EJ (2011). Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 14: 204-209. http://dx.doi.org/10.1016/j.pbi.2011.03.009 PMid:21478048   Salmon A, Ainouche ML and Wendel JF (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14: 1163-1175. http://dx.doi.org/10.1111/j.1365-294X.2005.02488.x PMid:15773943   Schneider S, Schneider S and Excoffier L (2000). Arlequin Version 2000, A Software for Population Genetics Data Analysis. University of Geneva, Geneva.   Shen S, Wang Z, Shan X, Wang H, et al. (2006). Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure. Sci. China C. Life Sci. 49: 97-104. http://dx.doi.org/10.1007/s11427-006-0097-3 PMid:16704112   Tan MP (2010). Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48: 21-26. http://dx.doi.org/10.1016/j.plaphy.2009.10.005 PMid:19889550   Tang S and Knapp SJ (2003). Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106: 990-1003. PMid:12671746   Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174. http://dx.doi.org/10.1371/journal.pbio.0050174 PMid:17579518 PMCid:1892575   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Waugh R, McLean K, Flavell AJ, Pearce SR, et al. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253: 687-694. http://dx.doi.org/10.1007/s004380050372 PMid:9079879   Wright SI, Bi IV, Schroeder SG, Yamasaki M, et al. (2005). The effects of artificial selection on the maize genome. Science 308: 1310-1314. http://dx.doi.org/10.1126/science.1107891 PMid:15919994   Yeh FC, Yang RC, Boyle TBJ and Ye ZH (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Version 1.21. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.   Yi C, Zhang S, Liu X and Bui HT (2010). Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol. 10: 259. http://dx.doi.org/10.1186/1471-2229-10-259 PMid:21092236 PMCid:3017842
M. J. Wang, Zou, H. D., Lin, Z. S., Wu, Y., Chen, X., and Yuan, Y. P., Expressed sequence tag-PCR markers for identification of alien barley chromosome 2H in wheat, vol. 11, pp. 3452-3463, 2012.
Andersen JR and Lübberstedt T (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 PMid:14607101   Blake TK, Kadyrzhanova KW, Shpherd KW and Islam AKMR (1996). STS- PCR markers appropriate for wheat-barley introgression. Theor. Appl. Genet. 93: 826-832. http://dx.doi.org/10.1007/BF00224082   Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, et al. (2004). A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168: 625-637. http://dx.doi.org/10.1534/genetics.104.034801 PMid:15514040 PMCid:1448822   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, et al. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127: 1539-1555. http://dx.doi.org/10.1104/pp.010196 PMid:11743099 PMCid:133562   Endo TR and Gill BS (1996). The deletion stocks of common wheat. J. Hered. 87: 295-307. http://dx.doi.org/10.1093/oxfordjournals.jhered.a023003   Feuillet C and Keller B (2002). Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann. Bot. 89: 3-10. http://dx.doi.org/10.1093/aob/mcf008   Foote TN, Griffiths S, Allouis S and Moore G (2004). Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct. Integr. Genomics 4: 26-33. http://dx.doi.org/10.1007/s10142-003-0101-y PMid:14727148   Gupta PK and Rustgi S (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct. Integr. Genomics 4: 139-162. http://dx.doi.org/10.1007/s10142-004-0107-0 PMid:15095058   Hagras AA, Kishii M, Sato K and Tanaka H (2005). Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed. Sci. 55: 335-341. http://dx.doi.org/10.1270/jsbbs.55.335   Hejgaard J, Bjørn SE and Nielsen G (1984). Localization to chromosomes of structural genes for the major protease inhibitors of barley grains. Theor. Appl. Genet. 68: 127-130. http://dx.doi.org/10.1007/BF00252327   Henry RJ, Battershell VG, Brennan PS and Oono K (1992). Control of wheat a-amylase using inhibitors from cereals. J. Sci. Food Agr. 58: 281-284. http://dx.doi.org/10.1002/jsfa.2740580218   Islam AKMR, Shepherd KW and Sparrow DHB (1981). Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46: 161-174. http://dx.doi.org/10.1038/hdy.1981.24   Leah R and Mundy J (1989). The bifunctional a-amylase/subtilisin inhibitor of barley: nucleotide sequence and patterns of seed-specific expression. Plant Mol. Biol. 12: 673-682. http://dx.doi.org/10.1007/BF00044158   Nasuda S, Kikkawa Y, Ashida T, Islam AK, et al. (2005). Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 80: 357-366. http://dx.doi.org/10.1266/ggs.80.357 PMid:16394587   Opanowicz M, Vain P, Draper J, Parker D, et al. (2008). Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci. 13: 172-177. http://dx.doi.org/10.1016/j.tplants.2008.01.007 PMid:18343709   Qi LL, Echalier B, Chao S, Lazo GR, et al. (2004). A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701-712. http://dx.doi.org/10.1534/genetics.104.034868 PMid:15514046 PMCid:1448828   Sato K, Nankaku N, Motoi Y and Takeda K (2004). A Large Scale Mapping of ESTs on Barley Genome. Proceedings of the 9th International Barley Genetics Symposium, Brno, 79-85.   Sato K, Nankaku N and Takeda K (2009). A high-density transcript linkage map of barley derived from a single population. Heredity 103: 110-117. http://dx.doi.org/10.1038/hdy.2009.57 PMid:19455180   Wang MJ, Zhang Y, Lin ZS, Ye XG, et al. (2010). Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theor. Appl. Genet. 121: 1369-1380. http://dx.doi.org/10.1007/s00122-010-1394-6 PMid:20585749   Yuan YP, Chen X, Xiao SH and Islam AKRM (2003). Identification of wheat-barley 2H alien substitution lines. Acta Bot. Sin. 45: 1096-1102.