Publications
Found 4 results
Filters: Author is C.A. Fuzo [Clear All Filters]
“Structure and dynamics of the monomer of protein E of dengue virus type 2 with unprotonated histidine residues”, vol. 12, pp. 348-359, 2013.
, Alberts B, Johnson A, Lewis J, Raff M, et al. (2002). Molecular Biology of the Cell. Garland Science, New York.
Allison SL, Schalich J, Stiasny K, Mandl CW, et al. (2001). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75: 4268-4275.
http://dx.doi.org/10.1128/JVI.75.9.4268-4275.2001
PMid:11287576 PMCid:114172
Becker Y (1982). Molecular Virology: Molecular and Medical Aspects of Disease-Causing Viruses of Man and Animals. Martinus Nijhoff Publishers, Hingham.
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, et al. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81: 3684-3690.
http://dx.doi.org/10.1063/1.448118
Berman HM, Westbrook J, Feng Z, Gilliland G, et al. (2000). The Protein Data Bank. Nucleic Acids Res. 28: 235-242.
http://dx.doi.org/10.1093/nar/28.1.235
PMid:10592235 PMCid:102472
Chen VB, Arendall WB, III, Headd JJ, Keedy DA, et al. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66: 12-21.
http://dx.doi.org/10.1107/S0907444909042073
PMid:20057044 PMCid:2803126
Chen Y, Maguire T, Hileman RE, Fromm JR, et al. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3: 866-871.
http://dx.doi.org/10.1038/nm0897-866
PMid:9256277
Degrève L, Fuzo CA, Silva GM and Caliri A (2011a). The Stability of Extended Secondary Protein Structures: The Dengue Virus E Protein Case. In: Ninth Triennial Congress of the World Association of Theoretical and Computational Chemists Santiago de Compostela, PII-083.
Degrève L, Fuzo CA and Caliri A (2011b). Molecular simulation of the e protein from dengue virus type 2. 36th FEBS Congress of the Biochemistry for Tomorrows Medicine. FEBS J. 278: 368-368.
DVI (2012). Dengue Vaccine Initiative. Available at [http://www.denguevaccines.org/why-a-vaccine]. Accessed February 6, 2012.
Essman U, Perera L, Berkowitz ML, Darden T, et al. (1995). A smooth particle mesh Ewald method. J. Chem. Phys. 103: 8577-8592.
http://dx.doi.org/10.1063/1.470117
Flint SJ, Enquist LW, Racaniello VRT and Skalka AM (2004). Principles of Virology: Molecular Biology, Pathogenesis, and Control of Animal Viruses. ASM Press, Washington.
Germi R, Crance JM, Garin D, Guimet J, et al. (2002). Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292: 162-168.
http://dx.doi.org/10.1006/viro.2001.1232
PMid:11878919
Hess B, Bekker H, Berendsen HJC and Fraaije JGEM (1997). LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18: 1463-1472.
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Hess B, Kutzner C, van der Spoel D and Lindahl E (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4: 435-447.
http://dx.doi.org/10.1021/ct700301q
Kabsch W and Sander C (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577-2637.
http://dx.doi.org/10.1002/bip.360221211
PMid:6667333
Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, et al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108: 717-725.
http://dx.doi.org/10.1016/S0092-8674(02)00660-8
Leah AR (2001). Molecular Modeling: Principles and Applications. Prentice Hall, New York.
Li Z, Khaliq M, Zhou Z, Post CB, et al. (2008). Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem. 51: 4660-4671.
http://dx.doi.org/10.1021/jm800412d
PMid:18610998 PMCid:2562352
Miyamoto S and Kollman PA (1992). SETTLE - an analytical version of the shake and rattle algorithm for rigid water models. J. Comput. Chem. 13: 952-962.
http://dx.doi.org/10.1002/jcc.540130805
Modis Y, Ogata S, Clements D and Harrison SC (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. U. S. A. 100: 6986-6991.
http://dx.doi.org/10.1073/pnas.0832193100
PMid:12759475 PMCid:165817
Modis Y, Ogata S, Clements D and Harrison SC (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427: 313-319.
http://dx.doi.org/10.1038/nature02165
PMid:14737159
Modis Y, Ogata S, Clements D and Harrison SC (2005). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 79: 1223-1231.
http://dx.doi.org/10.1128/JVI.79.2.1223-1231.2005
PMid:15613349 PMCid:538574
Navarro-Sanchez E, Altmeyer R, Amara A, Schwarts O, et al. (2003). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 4: 723-728.
http://dx.doi.org/10.1038/sj.embor.embor866
PMid:12783086 PMCid:1326316
PDB (2012). Protein Data Bank. Available at [http://www.pdb.org]. Accessed February 6, 2012.
Perera R, Khaliq M and Kuhn RJ (2008). Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res. 80: 11-22.
http://dx.doi.org/10.1016/j.antiviral.2008.05.004
PMid:18585795 PMCid:2646114
Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, et al. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124: 485-493.
http://dx.doi.org/10.1016/j.cell.2005.11.042
PMid:16469696
PyMol (2012). The PyMOL Molecular Graphics System. Available at [http://sourceforge.net/projects/pymol/files/Legacy/]. Accessed February 6, 2012.
Stauffer F, Melo MN, Carneiro FA, Sousa FJ, et al. (2008). Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. Mol. Membr. Biol. 25: 128-138.
http://dx.doi.org/10.1080/09687680701633091
PMid:18307100
Stiasny K and Heinz FX (2006). Flavivirus membrane fusion. J. Gen. Virol. 87: 2755-2766.
http://dx.doi.org/10.1099/vir.0.82210-0
PMid:16963734
van der Schaar HM, Rust MJ, Waarts BL, Ende-Metselaar H, et al. (2007). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J. Virol. 81: 12019-12028.
http://dx.doi.org/10.1128/JVI.00300-07
PMid:17728239 PMCid:2168764
van der Spoel D, Lindahl E, Hess B, van Buuren AR, et al. (2010). Gromacs User Manual Version 4.5.4. Available at [http://www.gromacs.org]. Accessed February 6, 2012.
van Gunsteren WF, Krüger P, Billeter SR, Mark AE, et al. (1996). Biomolecular Simulation: The Gromos 96 Manual and User Guide. Hoehchulverlag an du ETH, Zürich.
Volk DE, Lee YC, Li X, Thiviyanathan V, et al. (2007). Solution structure of the envelope protein domain III of dengue-4 virus. Virology 364: 147-154.
http://dx.doi.org/10.1016/j.virol.2007.02.023
PMid:17395234 PMCid:1950219
WHO (2012). World Health Organization. Available at [http://www.who.int/topics/dengue/en/]. Accessed February 6, 2012.
Zhang J, Wang J, Gao N, Chen Z, et al. (2007). Up-regulated expression of β3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem. Biophys. Res. Commun. 356: 763-768.
http://dx.doi.org/10.1016/j.bbrc.2007.03.051
PMid:17382900
Zhang Y, Zhang W, Ogata S, Clements D, et al. (2004). Conformational changes of the flavivirus E glycoprotein. Structure 12: 1607-1618.
http://dx.doi.org/10.1016/j.str.2004.06.019
PMid:15341726
“The role of disulfide bridges in the 3-D structures of the antimicrobial peptides gomesin and protegrin-1: a molecular dynamics study”, vol. 7, pp. 1070-1088, 2008.
, “Study of the antimicrobial peptide indolicidin and a mutant in micelle medium by molecular dynamics simulation”, vol. 7, pp. 986-999, 2008.
,