Publications

Found 2 results
Filters: Author is C.H. Hu  [Clear All Filters]
2016
J. Yang, Li, B., Liu, S. W., Biswas, M. K., Liu, S., Wei, Y. R., Zuo, C. W., Deng, G. M., Kuang, R. B., Hu, C. H., Yi, G. J., and Li, C. Y., Fermentation of Foc TR4-infected bananas and Trichoderma spp, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Fund (#U1131004 and #31471740), the National Banana Industry and Technology System Project (nycytx-33), the International Collaborative Project (#2013J4500033, #2011B050400004, and #2013DFB30400), the Science and Technology Project of Guangdong Province (#2013A061402005 and #2010B031800012), the National Spark Program Project (#2010GA780005), and the “948” Project of the Department of Agriculture (#2011-G16). The funding organizations had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.REFERENCESBeckman CH (1990). Host responses to the pathogen. In: Fusarium wilt of banana (Ploetz RC, eds.). APS Press, American Phytopathological Society, St. Paul. Castle A, Speranzini D, Rghei N, Alm G, et al (1998). Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl. Environ. Microbiol. 64: 133-137. Gautam SP, Bundela PS, Pandey AK, Jamaluddinet al (2012). Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int. J. Microbiol. 2012: 325907. http://dx.doi.org/10.1155/2012/325907 Ghose TK, et al (1987). Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. http://dx.doi.org/10.1351/pac198759020257 Haygood RA, Strider DL, et al (1982). A comparison of inoculation methods of Erwinia chrysanthemi in greenhouse ornamentals. Plant Dis. 66: 461-463. http://dx.doi.org/10.1094/PD-66-461 Huang YH, Wang RC, Li CH, Zuo CW, et al (2012). Control of Fusarium wilt in banana with Chinese leek. Eur. J. Plant Pathol. 134: 87-95. http://dx.doi.org/10.1007/s10658-012-0024-3 Hwang SC, Ko WH, et al (2004). Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 88: 580-588. http://dx.doi.org/10.1094/PDIS.2004.88.6.580 Jaklitsch WM, Samuels GJ, Ismaiel A, Voglmayr H, et al (2013). Disentangling the Trichoderma viridescens complex. Persoonia 31: 112-146. http://dx.doi.org/10.3767/003158513X672234 Joshi BB, Bhatt RP, Bahukhandi D, et al (2010). Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. J. Environ. Biol. 31: 921-928. Li CY, Chen S, Zuo CW, Sun QM, et al (2011). The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 131: 327-340. http://dx.doi.org/10.1007/s10658-011-9811-5 Li CY, Deng GM, Yang J, Viljoen A, et al (2012). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13: 374. http://dx.doi.org/10.1186/1471-2164-13-374 Miller GL, et al (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. http://dx.doi.org/10.1021/ac60147a030 Morton DJ, Stroube WH, et al (1955). Antagonistic and stimulating effects of soil micro-organism of Sclerotium. Phytopathology 45: 417-420. Mysore VT, Basavanna M, Monnanda SN, Harishchandra SP, et al (2005). Endophytic fungal assemblages from inner and twig of Terminalia arjuna W. and A. (Combretaceae). World J. Microbiol. Biotechnol. 21: 1535-1540. http://dx.doi.org/10.1007/s11274-005-7579-5 Ploetz RC (1990). Population biology of Fusarium oxysporum f. sp. cubense. In: Fusarium wilt of banana (Ploetz RC, eds.). APS Press, American Phytopathological Society, St. Paul. Ploetz RC, et al (1994). Panama disease: return of the first banana menace. Int. J. Pest Manage. 40: 326-336. http://dx.doi.org/10.1080/09670879409371908 Ploetz RC, et al (2015). Fusarium wilt of banana. Phytopathology 105: 1512-1521. http://dx.doi.org/10.1094/PHYTO-04-15-0101-RVW Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP, et al (1999). Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol. Res. 103: 696-700. http://dx.doi.org/10.1017/S0953756298007655 Raza W, Ling N, Zhang R, Huang Q, et al (2016). Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit. Rev. Biotechnol. 26: 1-11. http://dx.doi.org/10.3109/07388551.2015.1130683 Sivan A, Ucko O, Chet I, et al (1987). Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis. 71: 587-592. http://dx.doi.org/10.1094/PD-71-0587 Sundaramoorthy S, Balabaskar P, et al (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J. Appl. Biol. Biotechnol. 1: 36-40. Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Waqas M, Khan AL, Kamran M, Hamayun M, et al (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17: 10754-10773. http://dx.doi.org/10.3390/molecules170910754 Zhang JD, Yang Q, et al (2015). Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genet. Mol. Res. 14: 1771-1781. http://dx.doi.org/10.4238/2015.March.13.4    
2012
P. Liu, Wang, X., Hu, C. H., and Hu, T. H., Bioinformatics analysis with graph-based clustering to detect gastric cancer-related pathways, vol. 11, pp. 3497-3504, 2012.
Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, et al. (2006). Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7: 207. http://dx.doi.org/10.1186/1471-2105-7-207 PMid:16613608 PMCid:1473204   Barbero S, Mielgo A, Torres V, Teitz T, et al. (2009). Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Res. 69: 3755-3763. http://dx.doi.org/10.1158/0008-5472.CAN-08-3937 PMid:19383910 PMCid:2684981   Begnami MD, Fregnani JH, Nonogaki S and Soares FA (2010). Evaluation of cell cycle protein expression in gastric cancer: cyclin B1 expression and its prognostic implication. Hum. Pathol. 41: 1120-1127. http://dx.doi.org/10.1016/j.humpath.2010.01.007 PMid:20334896   Calcagno DQ, Leal MF, Taken SS, Assumpcao PP, et al. (2005). Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res. 25: 4069-4074. PMid:16309200   Cao HX, Li SP, Wu JZ, Gao CM, et al. (2010). Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes, alcohol drinking and the risk for stomach cancer in Chinese males. Asian Pac. J. Cancer Prev. 11: 1073-1077. PMid:21133627   Cervantes A, Rodriguez BE, Perez FA and Chirivella G, I (2007). Molecular biology of gastric cancer. Clin. Transl. Oncol. 9: 208-215. http://dx.doi.org/10.1007/s12094-007-0041-4 PMid:17462972   Choi MG, Noh JH, An JY, Hong SK, et al. (2009). Expression levels of cyclin G2, but not cyclin E, correlate with gastric cancer progression. J. Surg. Res. 157: 168-174. http://dx.doi.org/10.1016/j.jss.2008.06.020 PMid:19559447   Crew KD and Neugut AI (2006). Epidemiology of gastric cancer. World J. Gastroenterol. 12: 354-362. PMid:16489633   Cui J, Chen Y, Chou WC, Sun L, et al. (2011a). An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 39: 1197-1207. http://dx.doi.org/10.1093/nar/gkq960 PMid:20965966 PMCid:3045610   Cui J, Li F, Wang G, Fang X, et al. (2011b). Gene-expression signatures can distinguish gastric cancer grades and stages. PLoS One 6: e17819. http://dx.doi.org/10.1371/journal.pone.0017819 PMid:21445269 PMCid:3060867   Feng L, Xie Y, Zhang H and Wu Y (2012). miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med. Oncol. 29: 856-863. http://dx.doi.org/10.1007/s12032-011-9823-1 PMid:21264532   Fukushima A, Kusano M, Redestig H, Arita M, et al. (2011). Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Syst. Biol. 5: 1. http://dx.doi.org/10.1186/1752-0509-5-1 PMid:21194489 PMCid:3030539   Hong F, Breitling R, McEntee CW, Wittner BS, et al. (2006). RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22: 2825-2827. http://dx.doi.org/10.1093/bioinformatics/btl476 PMid:16982708   Huang dW, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.   Ii M, Yamamoto H, Adachi Y, Maruyama Y, et al. (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp. Biol. Med. 231: 20-27.   Inoue T, Kataoka H, Goto K, Nagaike K, et al. (2004). Activation of c-Met (hepatocyte growth factor receptor) in human gastric cancer tissue. Cancer Sci. 95: 803-808. http://dx.doi.org/10.1111/j.1349-7006.2004.tb02185.x PMid:15504247   Kanehisa M (2002). The KEGG database. Novartis Found. Symp. 247: 91-101. http://dx.doi.org/10.1002/0470857897.ch8 PMid:12539951   Kang YH, Lee HS and Kim WH (2002). Promoter methylation and silencing of PTEN in gastric carcinoma. Lab. Invest. 82: 285-291. http://dx.doi.org/10.1038/labinvest.3780422 PMid:11896207   Kawashima A, Tsugawa S, Boku A, Kobayashi M, et al. (2003). Expression of alphav integrin family in gastric carcinomas: increased alphavbeta6 is associated with lymph node metastasis. Pathol. Res. Pract. 199: 57-64. http://dx.doi.org/10.1078/0344-0338-00355 PMid:12747466   Kim DH (2007). Prognostic implications of cyclin B1, p34cdc2, p27(Kip1) and p53 expression in gastric cancer. Yonsei Med. J. 48: 694-700. http://dx.doi.org/10.3349/ymj.2007.48.4.694 PMid:17722244 PMCid:2628048   Kim J, Kim C, Kim TS, Bang SI, et al. (2006). IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem. Biophys. Res. Commun. 344: 1284-1289. http://dx.doi.org/10.1016/j.bbrc.2006.04.016 PMid:16650813   Kitoh T, Yanai H, Saitoh Y, Nakamura Y, et al. (2004). Increased expression of matrix metalloproteinase-7 in invasive early gastric cancer. J. Gastroenterol. 39: 434-440. http://dx.doi.org/10.1007/s00535-003-1316-3 PMid:15175941   Kurayoshi M, Oue N, Yamamoto H, Kishida M, et al. (2006). Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66: 10439-10448. http://dx.doi.org/10.1158/0008-5472.CAN-06-2359 PMid:17079465   Lauren P (1965). The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64: 31-49. PMid:14320675   Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res. 65: 2115-2124. http://dx.doi.org/10.1158/0008-5472.CAN-04-3340 PMid:15781621   Park JH, Lee BL, Yoon J, Kim J, et al. (2010). Focal adhesion kinase (FAK) gene amplification and its clinical implications in gastric cancer. Hum. Pathol. 41: 1664-1673. http://dx.doi.org/10.1016/j.humpath.2010.06.004 PMid:20869748   Pavelic K, Kolak T, Kapitanovic S, Radosevic S, et al. (2003). Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R). J. Pathol. 201: 430-438. http://dx.doi.org/10.1002/path.1465 PMid:14595755   Shin CM, Kim N, Cho SI, Kim JS, et al. (2011). Association between alcohol intake and risk for gastric cancer with regard to ALDH2 genotype in the Korean population. Int. J. Epidemiol. 40: 1047-1055. http://dx.doi.org/10.1093/ije/dyr067 PMid:21507992   Smith MG, Hold GL, Tahara E and El-Omar EM (2006). Cellular and molecular aspects of gastric cancer. World J. Gastroenterol. 12: 2979-2990. PMid:16718776   Song HS, Do YR, Kim IH, Sohn SS, et al. (2004). Prognostic significance of immunohistochemical expression of EGFR and C-erbB-2 oncoprotein in curatively resected gastric cancer. Cancer Res. Treat. 36: 240-245. http://dx.doi.org/10.4143/crt.2004.36.4.240 PMid:20368841 PMCid:2843891   Stock M and Otto F (2005). Gene deregulation in gastric cancer. Gene 360: 1-19. http://dx.doi.org/10.1016/j.gene.2005.06.026 PMid:16154715   Toyokawa T, Yashiro M and Hirakawa K (2009). Co-expression of keratinocyte growth factor and K-sam is an independent prognostic factor in gastric carcinoma. Oncol. Rep. 21: 875-880. PMid:19287982   Yasui W, Oue N, Aung PP, Matsumura S, et al. (2005). Molecular-pathological prognostic factors of gastric cancer: a review. Gastric. Cancer 8: 86-94. http://dx.doi.org/10.1007/s10120-005-0320-0 PMid:15864715   Yokozaki H, Yasui W and Tahara E (2001). Genetic and epigenetic changes in stomach cancer. Int. Rev. Cytol. 204: 49-95. http://dx.doi.org/10.1016/S0074-7696(01)04003-7   Zheng L, Wang L, Ajani J and Xie K (2004). Molecular basis of gastric cancer development and progression. Gastric Cancer 7: 61-77. http://dx.doi.org/10.1007/s10120-004-0277-4 PMid:15224192