Publications

Found 3 results
Filters: Author is F.J.L. Aragão  [Clear All Filters]
2012
E. F. M. Abreu, Tinoco, M. L. P., Andrade, E. C., and Aragão, F. J. L., Diversity among isolates of cowpea severe mosaic virus infecting cowpeas in northeastern Brazil, vol. 11, pp. 3146-3153, 2012.
Aragão FJ and Faria JC (2009). First transgenic geminivirus-resistant plant in the field. Nat. Biotechnol. 27: 1086-1088. http://dx.doi.org/10.1038/nbt1209-1086 PMid:20010580   Beserra JEA Jr, Andrade EC, Camarço RFRA, Nascimento AKQ, et al. (2011). Sequence variability in the coat protein gene of cowpea severe mosaic virus isolates from northeastern Brazil. Trop. Plant Pathol. 36: 121-124. http://dx.doi.org/10.1590/S1982-56762011000200009   Bonfim K, Faria JC, Nogueira EO, Mendes EA, et al. (2007). RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 20: 717-726. http://dx.doi.org/10.1094/MPMI-20-6-0717 PMid:17555279   Booker HM, Umaharan P and McDavid CR (2005). Effect of cowpea severe mosaic virus on crop growth characteristics and yield of cowpea. Plant Dis. 89: 515-520. http://dx.doi.org/10.1094/PD-89-0515   Bradshaw JD, Zhang C, Hill JH and Rice ME (2011). Landscape epidemiology of bean pod mottle Comovirus: molecular evidence of heterogeneous sources. Arch. Virol. 156: 1615-1619. http://dx.doi.org/10.1007/s00705-011-1005-0 PMid:21562882   Chen X and Bruening G (1992). Cloned DNA copies of cowpea severe mosaic virus genomic RNAs: infectious transcripts and complete nucleotide sequence of RNA 1. Virology 191: 607-618. http://dx.doi.org/10.1016/0042-6822(92)90236-I   Costa CL, Lin MT, Kitajima EW, Santos AA, et al. (1978). Cerotoma arcuata (Oliv.), um crisomelídeo vector do mosaico da Vigna no Brasil. Fitopatol. Bras. 3: 81-82.   Gonçalves MF and Lima JAA (1982). Efeitos do "cowpea severe mosaic virus" sobre a produtividade do feijão-de-corda. Fitopatol. Bras. 7: 547.   Gu H and Ghabrial SA (2005). The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology 333: 271-283. http://dx.doi.org/10.1016/j.virol.2005.01.020 PMid:15721361   Kareem KT and Taiwo MA (2007). Interactions of viruses in cowpea: effects on growth and yield parameters. Virol. J 4: 15. http://dx.doi.org/10.1186/1743-422X-4-15 PMid:17286870 PMCid:1805424   Le Gall O, Iwanami T and Karasev AV (2005). Family Comoviridae. In: Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses (Fauquet CM, Mayo MA, Maniloff J, Desselberger U, et al., eds.). Elsevier Academic Press, San Diego, 807-818.   Lima JAA, Sittolin IM and Lima RCA (2005a). Diagnose e Estratégias de Controle de Doenças Ocasionadas por Vírus. In: Feijão-Caupi Avanços Tecnológicos (Freire Filho FR, Lima JAA and Ribeiro VQ, eds.). Embrapa Informação Tecnológica, Brasília, 403-459.   Lima JAA, Nascimento AKQ, Silva GS, Camarço RFEA, et al. (2005b). Crotalaria paulinea, a new natural host of cowpea severe mosaic virus. Fitopatol. Bras. 30: 429-433. http://dx.doi.org/10.1590/S0100-41582005000400018   Lomonossoff GP and Ghabrial SA (2001). Comoviruses. In: Encyclopedia of Plant Pathology (Maloy OC and Murray TD, eds.). John Wiley and Sons, New York, 239-242.   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 4: 1-9.   Thottappilly G and Rossel HW (1985). Worldwide Occurrence and Distribution of Virus Diseases. In: Cowpea Research, Production and Utilization (Singh SR and Richie KO, eds.). Jonh Wiley & Sons, Chichester, 155-171.   Zhang C, Gu H and Ghabrial SA (2007). Molecular characterization of naturally occurring RNA1 recombinants of the Comovirus bean pod mottle virus. Phytopathology 97: 1255-1262. http://dx.doi.org/10.1094/PHYTO-97-10-1255 PMid:18943683
2011
G. R. Vianna, Aragão, F. J. L., and Rech, E. L., A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max), vol. 10, pp. 382-390, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Aragão FJL, Vianna GR, Albino MMC and Rech EL (2002). Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci. 42: 1298-1302. http://dx.doi.org/10.2135/cropsci2002.1298   Aragão FJL, Vianna GR, Carvalheira SBRC and Rech EL (2005). Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci. 168: 1227-1233. http://dx.doi.org/10.1016/j.plantsci.2004.12.024   Artelt P, Grannemann R, Stocking C, Friel J, et al. (1991). The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99: 249-254. http://dx.doi.org/10.1016/0378-1119(91)90134-W   Cheng YQ, Yang J, Xu FP, An LJ, et al. (2009). Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation. Appl. Biochem. Biotechnol. 159: 739-749. http://dx.doi.org/10.1007/s12010-009-8554-7 PMid:19255730   Cunha NB, Araujo AC, Leite A, Murad AM, et al. (2010). Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genet. Mol. Res. 9: 1163-1170. PMid:20589613   Dale PJ (1999). Public concerns over transgenic crops. Genome Res. 9: 1159-1162. http://dx.doi.org/10.1101/gr.9.12.1159 PMid:10613837   Dellaporta SL, Wood J and Hicks JB (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21. http://dx.doi.org/10.1007/BF02712670   Edwards K, Johnstone C and Thompson C (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. http://dx.doi.org/10.1093/nar/19.6.1349 PMid:2030957 PMCid:333874   Fu X, Duc LT, Fontana S, Bong BB, et al. (2000). Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9: 11-19. http://dx.doi.org/10.1023/A:1008993730505 PMid:10853265   Gao XR, Wang GK, Su Q, Wang Y, et al. (2007). Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol. Lett. 29: 1781-1787. http://dx.doi.org/10.1007/s10529-007-9439-x PMid:17609861   Jakowitsch J, Papp I, Moscone EA, van der Winden J, et al. (1999). Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 17: 131-140. http://dx.doi.org/10.1046/j.1365-313X.1999.00357.x PMid:10074712   Liu M, Yang J, Cheng YQ and An LJ (2009). Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette. J. Zhejiang Univ. Sci. B 10: 870-876. http://dx.doi.org/10.1631/jzus.B0920204 PMid:19946950 PMCid:2789521   Miki B and McHugh S (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107: 193-232. http://dx.doi.org/10.1016/j.jbiotec.2003.10.011 PMid:14736458   Muller AE, Kamisugi Y, Gruneberg R, Niedenhof I, et al. (1999). Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J. Mol. Biol. 291: 29-46. http://dx.doi.org/10.1006/jmbi.1999.2957 PMid:10438604   Nunes AC, Vianna GR, Cuneo F, Amaya-Farfan J, et al. (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224: 125-132. http://dx.doi.org/10.1007/s00425-005-0201-0 PMid:16395584   Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Sambrook J, Fritsch EF and Maniats T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.   Sathasivan K, Haughn GW and Murai N (1990). Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18: 2188. http://dx.doi.org/10.1093/nar/18.8.2188 PMid:2336405 PMCid:330714   Tinoco ML, Vianna GR, Abud S, Souza PIM, et al. (2006). Radiation as a tool to remove selective marker genes from transgenic soybean plants. Biol. Plantarum 50: 146-148. http://dx.doi.org/10.1007/s10535-005-0091-9   US Food and Drug Administration (US FDA) (1998). Guidance for Industry: Use of Antibiotic Resistance Marker Genes in Transgenic Plants. Draft Guidance, September 4, Rockville.   Vianna GR, Albino MMC, Dias BBA, Silva LM, et al. (2004). Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci. Hortic. 99: 371-378. http://dx.doi.org/10.1016/S0304-4238(03)00107-9   Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, et al. (2006). Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep. 25: 807-814. http://dx.doi.org/10.1007/s00299-006-0132-7 PMid:16528564   Zhao Y, Qian Q, Wang H and Huang D (2007). Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J. Genet. Genomics 34: 824-835. http://dx.doi.org/10.1016/S1673-8527(07)60093-9