Publications

Found 5 results
Filters: Author is E.L. Rech  [Clear All Filters]
2012
D. Bittencourt, Oliveira, P. F., Prosdocimi, F., and Rech, E. L., Protein families, natural history and biotechnological aspects of spider silk, vol. 11. pp. 2360-2380, 2012.
Ayoub NA and Hayashi CY (2008). Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Mol. Biol. Evol. 25: 277-286. http://dx.doi.org/10.1093/molbev/msm246 PMid:18048404   Bittencourt DMC (2007). Caracterização Molecular de Proteínas de Sedas de Aranhas da Biodiversidade Brasileira. Doctoral thesis, Universidade de Brasília, UNB, Brasília.   Bittencourt D, Souto BM, Verza NC, Vinecky F, et al. (2007). Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 147: 597-606. http://dx.doi.org/10.1016/j.cbpb.2007.03.013 PMid:17490908   Bittencourt D, Dittmar K, Lewis RV and Rech EL (2010). A MaSp2-like gene found in the Amazon mygalomorph spider Avicularia juruensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 155: 419-426. http://dx.doi.org/10.1016/j.cbpb.2010.01.005 PMid:20096801   Blackledge TA and Hayashi CY (2006). Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209: 2452-2461. http://dx.doi.org/10.1242/jeb.02275 PMid:16788028   Blackledge TA, Scharff N, Coddington JA, Szuts T, et al. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl. Acad. Sci. U. S. A. 106: 5229-5234. http://dx.doi.org/10.1073/pnas.0901377106 PMid:19289848 PMCid:2656561   Bogush VG, Sokolova OS, Davydova LI, Klinov DV, et al. (2009). A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J. Neuroimmune Pharmacol. 4: 17-27. http://dx.doi.org/10.1007/s11481-008-9129-z PMid:18839314   Bram A, Brändén CI, Craig C, Snigireva I, et al. (1997). X-ray scattering of spider dragline silk. J. Appl. Crystallogr. 30: 390-392. http://dx.doi.org/10.1107/S0021889896012344   Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, et al. (2008). Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9: 1506-1510. http://dx.doi.org/10.1021/bm701124p PMid:18457450   Coddington JA and Levi HW (1991). Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22: 565-592. http://dx.doi.org/10.1146/annurev.es.22.110191.003025   Collin MA, Garb JE, Edgerly JS and Hayashi CY (2009). Characterization of silk spun by the embiopteran, Antipaluria urichi. Insect Biochem. Mol. Biol. 39: 75-82. http://dx.doi.org/10.1016/j.ibmb.2008.10.004 PMid:18996196   Coyle FA (1986). The Role of Silk in Prey Capture by Nonaraneomorph Spiders. In: Spiders: Webs, Behavior and Evolution (Shear WA, ed.). Stanford University Press, Stanford, 269-305.   Dong Z, Lewis RV and Middaugh CR (1991). Molecular mechanism of spider silk elasticity. Arch. Biochem. Biophys. 284: 53-57. http://dx.doi.org/10.1016/0003-9861(91)90262-H   Garb JE and Hayashi CY (2005). Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc. Natl. Acad. Sci. U. S. A. 102: 11379-11384. http://dx.doi.org/10.1073/pnas.0502473102 PMid:16061817 PMCid:1183556   Garb JE, DiMauro T, Lewis RV and Hayashi CY (2007). Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Mol. Biol. Evol. 24: 2454-2464. http://dx.doi.org/10.1093/molbev/msm179 PMid:17728281   Garb JE, Ayoub NA and Hayashi CY (2010). Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol. 10: 243. http://dx.doi.org/10.1186/1471-2148-10-243 PMid:20696068 PMCid:2928236   Gatesy J, Hayashi C, Motriuk D, Woods J, et al. (2001). Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291: 2603-2605. http://dx.doi.org/10.1126/science.1057561 PMid:11283372   Gellynck K, Verdonk P, Forsyth R, Almqvist KF, et al. (2008). Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. 19: 2963-2970. http://dx.doi.org/10.1007/s10856-007-3330-0 PMid:18360800   Gosline JM, Guerette PA, Ortlepp CS and Savage KN (1999). The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202: 3295-3303. PMid:10562512   Hagn F, Eisoldt L, Hardy JG, Vendrely C, et al. (2010). A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465: 239-242. http://dx.doi.org/10.1038/nature08936 PMid:20463741   Hayashi CY and Lewis RV (1998). Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275: 773-784. http://dx.doi.org/10.1006/jmbi.1997.1478 PMid:9480768   Hayashi CY and Lewis RV (2000). Molecular architecture and evolution of a modular spider silk protein gene. Science 287: 1477-1479. http://dx.doi.org/10.1126/science.287.5457.1477 PMid:10688794   Hayashi CY and Lewis RV (2001). Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution. Bioessays 23: 750-756. http://dx.doi.org/10.1002/bies.1105 PMid:11494324   Hayashi CY, Shipley NH and Lewis RV (1999). Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24: 271-275. http://dx.doi.org/10.1016/S0141-8130(98)00089-0   Hayashi CY, Blackledge TA and Lewis RV (2004). Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol. Biol. Evol. 21: 1950-1959. http://dx.doi.org/10.1093/molbev/msh204 PMid:15240839   Hedin M and Bond JE (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Mol. Phylogenet. Evol. 41: 454-471. http://dx.doi.org/10.1016/j.ympev.2006.05.017 PMid:16815045   Hinman MB and Lewis RV (1992). Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 267: 19320-19324. PMid:1527052   Hinman MB, Jones JA and Lewis RV (2000). Synthetic spider silk: a modular fiber. Trends Biotechnol. 18: 374-379. http://dx.doi.org/10.1016/S0167-7799(00)01481-5   Huang H and Sun XS (2010). Rational design of responsive self-assembling peptides from native protein sequences. Biomacromolecules 11: 3390-3394. http://dx.doi.org/10.1021/bm100894j PMid:21080625   Kaessmann H (2010). Origins, evolution, and phenotypic impact of new genes. Genome Res. 20: 1313-1326. http://dx.doi.org/10.1101/gr.101386.109 PMid:20651121 PMCid:2945180   Krishnaji ST, Huang W, Rabotyagova O, Kharlampieva E, et al. (2011). Thin film assembly of spider silk-like block copolymers. Langmuir 27: 1000-1008. http://dx.doi.org/10.1021/la102638j PMid:21207952   Lammel A, Schwab M, Hofer M, Winter G, et al. (2011). Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32: 2233-2240. http://dx.doi.org/10.1016/j.biomaterials.2010.11.060 PMid:21186052   Lefevre T, Rousseau ME and Pezolet M (2007). Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92: 2885-2895. http://dx.doi.org/10.1529/biophysj.106.100339 PMid:17277183 PMCid:1831708   Levasseur A and Pontarotti P (2011). The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol. Direct. 6: 11. http://dx.doi.org/10.1186/1745-6150-6-11 PMid:21333002 PMCid:3052240   Margulies M, Egholm M, Altman WE, Attiya S, et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380. PMid:16056220 PMCid:1464427   Motriuk-Smith D and Lewis RV (2004). Brown Widow (Latrodectus geometricus) major ampullate silk protein and its material properties. Biomed. Sci. Instrum. 40: 64-69. PMid:15133936   Nova A, Keten S, Pugno NM, Redaelli A, et al. (2010). Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10: 2626-2634. http://dx.doi.org/10.1021/nl101341w PMid:20518518   Ohno S (1970). Evolution by Gene Duplication. Springer Verlag, New York. PMCid:1712841   Omenetto FG and Kaplan DL (2010). New opportunities for an ancient material. Science 329: 528-531. http://dx.doi.org/10.1126/science.1188936 PMid:20671180 PMCid:3136811   Palmer JM (1985). The silk and silk production system of the funnel-web mygalomorph spider Euagrus (Araneae, Diplurudae). J. Morphol. 186: 195-207. http://dx.doi.org/10.1002/jmor.1051860205   Parkhe AD, Seeley SK, Gardner K, Thompson L, et al. (1997). Structural studies of spider silk proteins in the fiber. J. Mol. Recognit. 10: 1-6. http://dx.doi.org/10.1002/(SICI)1099-1352(199701/02)10:1<1::AID-JMR338>3.0.CO;2-7   Perry DJ, Bittencourt D, Siltberg-Liberles J, Rech EL, et al. (2010). Pyriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11: 3000-3006. http://dx.doi.org/10.1021/bm1007585 PMid:20954740 PMCid:3037428   Platnick NI (2012). The world spider catalog, version 13.0. American Museum of Natural History. Available at [http://research.amnh.org/iz/spiders/catalog]. Accessed March 2, 2012.   Prosdocimi F, Bittencourt D, da Silva FR, Kirst M, et al. (2011). Spinning gland transcriptomics from two main clades of spiders (order: Araneae) - insights on their molecular, anatomical and behavioral evolution. PLoS One 6: e21634. http://dx.doi.org/10.1371/journal.pone.0021634 PMid:21738742 PMCid:3126850   Rech EL (2011). Genomics and Synthetic Biology as a Viable Option to Intensify Sustainable use of Biodiversity. Available from Nature Precedings at [http://dx.doi.org/10.1038/npre.2011.5759.1]. Accessed March 15, 2012. http://dx.doi.org/10.1038/npre.2011.5759.1   Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, et al. (2005). Spider silk proteins - mechanical property and gene sequence. Zoolog. Sci. 22: 273-281. http://dx.doi.org/10.2108/zsj.22.273 PMid:15795489   Scheibel T (2004). Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact. 3: 14. http://dx.doi.org/10.1186/1475-2859-3-14 PMid:15546497 PMCid:534800   Scheibel T (2005). Protein fibers as performance proteins: new technologies and applications. Curr. Opin. Biotechnol. 16: 427-433. http://dx.doi.org/10.1016/j.copbio.2005.05.005 PMid:15950453   Selden PA and Gall JC (1992). A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology 35: 211-235.   Sensenig A, Agnarsson I and Blackledge TA (2010). Behavioural and biomaterial coevolution in spider orb webs. J. Evol. Biol. 23: 1839-1856. http://dx.doi.org/10.1111/j.1420-9101.2010.02048.x PMid:20629854   Silvers R, Buhr F and Schwalbe H (2010). The molecular mechanism of spider-silk formation. Angew. Chem. Int. Ed. Engl. 49: 5410-5412. http://dx.doi.org/10.1002/anie.201003033 PMid:20586091   Simmons A, Ray E and Jelinski LW (1994). Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27: 5235-5237. http://dx.doi.org/10.1021/ma00096a060   Simmons AH, Michal CA and Jelinski LW (1996). Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271: 84-87. http://dx.doi.org/10.1126/science.271.5245.84 PMid:8539605   Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, et al. (2006). Modelling conservation in the Amazon basin. Nature 440: 520-523. http://dx.doi.org/10.1038/nature04389 PMid:16554817   Soskine M and Tawfik DS (2010). Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11: 572-582. http://dx.doi.org/10.1038/nrg2808 PMid:20634811   Spiess K, Lammel A and Scheibel T (2010). Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 10: 998-1007. http://dx.doi.org/10.1002/mabi.201000071 PMid:20602494   Stern DL and Orgogozo V (2009). Is genetic evolution predictable? Science 323: 746-751. http://dx.doi.org/10.1126/science.1158997 PMid:19197055 PMCid:3184636   Stradling D (1994). Distribution and behavioral ecology of an arboreal "tarantula" spider in Trinidad. Biotropica 26: 84-97. http://dx.doi.org/10.2307/2389113   Swanson BO, Blackledge TA, Summers AP and Hayashi CY (2006). Spider dragline silk: correlated and mosaic evolution in high-performance biological materials. Evolution 60: 2539-2551. PMid:17263115   Teulé F, Miao YG, Sohn BH, Kim YS, et al. (2012). Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. U. S. A. 109: 923-928. http://dx.doi.org/10.1073/pnas.1109420109 PMid:22215590 PMCid:3271896   Vollrath F (1992). Spider web and silks. Sci. Am. 266: 70-76. http://dx.doi.org/10.1038/scientificamerican0392-70   Vollrath F (2000). Strength and structure of spiders' silks. J. Biotechnol. 74: 67-83. PMid:11763504   Vollrath F and Selden P (2007). The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38: 819-846. http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110221
2011
G. R. Vianna, Aragão, F. J. L., and Rech, E. L., A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max), vol. 10, pp. 382-390, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Aragão FJL, Vianna GR, Albino MMC and Rech EL (2002). Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci. 42: 1298-1302. http://dx.doi.org/10.2135/cropsci2002.1298   Aragão FJL, Vianna GR, Carvalheira SBRC and Rech EL (2005). Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci. 168: 1227-1233. http://dx.doi.org/10.1016/j.plantsci.2004.12.024   Artelt P, Grannemann R, Stocking C, Friel J, et al. (1991). The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99: 249-254. http://dx.doi.org/10.1016/0378-1119(91)90134-W   Cheng YQ, Yang J, Xu FP, An LJ, et al. (2009). Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation. Appl. Biochem. Biotechnol. 159: 739-749. http://dx.doi.org/10.1007/s12010-009-8554-7 PMid:19255730   Cunha NB, Araujo AC, Leite A, Murad AM, et al. (2010). Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genet. Mol. Res. 9: 1163-1170. PMid:20589613   Dale PJ (1999). Public concerns over transgenic crops. Genome Res. 9: 1159-1162. http://dx.doi.org/10.1101/gr.9.12.1159 PMid:10613837   Dellaporta SL, Wood J and Hicks JB (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21. http://dx.doi.org/10.1007/BF02712670   Edwards K, Johnstone C and Thompson C (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. http://dx.doi.org/10.1093/nar/19.6.1349 PMid:2030957 PMCid:333874   Fu X, Duc LT, Fontana S, Bong BB, et al. (2000). Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9: 11-19. http://dx.doi.org/10.1023/A:1008993730505 PMid:10853265   Gao XR, Wang GK, Su Q, Wang Y, et al. (2007). Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol. Lett. 29: 1781-1787. http://dx.doi.org/10.1007/s10529-007-9439-x PMid:17609861   Jakowitsch J, Papp I, Moscone EA, van der Winden J, et al. (1999). Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 17: 131-140. http://dx.doi.org/10.1046/j.1365-313X.1999.00357.x PMid:10074712   Liu M, Yang J, Cheng YQ and An LJ (2009). Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette. J. Zhejiang Univ. Sci. B 10: 870-876. http://dx.doi.org/10.1631/jzus.B0920204 PMid:19946950 PMCid:2789521   Miki B and McHugh S (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107: 193-232. http://dx.doi.org/10.1016/j.jbiotec.2003.10.011 PMid:14736458   Muller AE, Kamisugi Y, Gruneberg R, Niedenhof I, et al. (1999). Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J. Mol. Biol. 291: 29-46. http://dx.doi.org/10.1006/jmbi.1999.2957 PMid:10438604   Nunes AC, Vianna GR, Cuneo F, Amaya-Farfan J, et al. (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224: 125-132. http://dx.doi.org/10.1007/s00425-005-0201-0 PMid:16395584   Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Sambrook J, Fritsch EF and Maniats T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.   Sathasivan K, Haughn GW and Murai N (1990). Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18: 2188. http://dx.doi.org/10.1093/nar/18.8.2188 PMid:2336405 PMCid:330714   Tinoco ML, Vianna GR, Abud S, Souza PIM, et al. (2006). Radiation as a tool to remove selective marker genes from transgenic soybean plants. Biol. Plantarum 50: 146-148. http://dx.doi.org/10.1007/s10535-005-0091-9   US Food and Drug Administration (US FDA) (1998). Guidance for Industry: Use of Antibiotic Resistance Marker Genes in Transgenic Plants. Draft Guidance, September 4, Rockville.   Vianna GR, Albino MMC, Dias BBA, Silva LM, et al. (2004). Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci. Hortic. 99: 371-378. http://dx.doi.org/10.1016/S0304-4238(03)00107-9   Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, et al. (2006). Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep. 25: 807-814. http://dx.doi.org/10.1007/s00299-006-0132-7 PMid:16528564   Zhao Y, Qian Q, Wang H and Huang D (2007). Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J. Genet. Genomics 34: 824-835. http://dx.doi.org/10.1016/S1673-8527(07)60093-9
G. R. Vianna, Cunha, N. B., Murad, A. M., and Rech, E. L., Soybeans as bioreactors for biopharmaceuticals and industrial proteins, vol. 10. pp. 1733-1752, 2011.
Abud S, de Souza PI, Vianna GR, Leonardecz E, et al. (2007). Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genet. Mol. Res. 6: 445-452. PMid:17952868 Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441 Barnes S, Shonsey EM, Eliuk SM, Stella D, et al. (2008). High-resolution mass spectrometry analysis of protein oxidations and resultant loss of function. Biochem. Soc. Trans. 36: 1037-1044. http://dx.doi.org/10.1042/BST0361037 PMid:18793185    PMCid:2715854 Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, et al. (2010). Seed-based expression systems for plant molecular farming. Plant Biotechnol. J. 8: 588-606. http://dx.doi.org/10.1111/j.1467-7652.2010.00511.x PMid:20500681 Buhr T, Sato S, Ebrahim F, Xing A, et al. (2002). Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J. 30: 155-163. http://dx.doi.org/10.1046/j.1365-313X.2002.01283.x PMid:12000452 Cavazzoni J, Volk T, Bugbee B and Dougher T (1999). Phasic temperature and photoperiod control for soybean using a modified CROPGRO model. Life Support. Biosph. Sci. 6: 273-278. PMid:11543266 Christou P, McCabe DE and Swain WF (1988). Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol. 87: 671-674. http://dx.doi.org/10.1104/pp.87.3.671 PMid:16666205    PMCid:1054818 Cunha NB, Araujo AC, Leite A, Murad AM, et al. (2010). Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genet. Mol. Res. 9: 1163-1170. PMid:20589613 Cunha NB, Murad AM, Cipriano TM, Araujo AC, et al. (2011a). Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res. 20: 811-826. http://dx.doi.org/10.1007/s11248-010-9460-z PMid:21069461 Cunha NB, Murad AM, Ramos GL, Maranhao AQ, et al. (2011b). Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res. 20: 841-855. http://dx.doi.org/10.1007/s11248-010-9461-y PMid:21069460 Daniell H, Streatfield SJ and Wycoff K (2001). Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6: 219-226. http://dx.doi.org/10.1016/S1360-1385(01)01922-7 Demain AL and Vaishnav P (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27: 297-306. http://dx.doi.org/10.1016/j.biotechadv.2009.01.008 PMid:19500547 Edman P (1949). A method for the determination of amino acid sequence in peptides. Arch. Biochem. 22: 475. PMid:18134557 Fischer R, Stoger E, Schillberg S, Christou P, et al. (2004). Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158. http://dx.doi.org/10.1016/j.pbi.2004.01.007 PMid:15003215 Gleba Y, Klimyuk V and Marillonnet S (2005). Magnifection-a new platform for expressing recombinant vaccines in plants. Vaccine 23: 2042-2048. http://dx.doi.org/10.1016/j.vaccine.2005.01.006 PMid:15755568 Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, et al. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U. S. A. 76: 106-110. http://dx.doi.org/10.1073/pnas.76.1.106 Gomord V and Faye L (2004). Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7: 171-181. http://dx.doi.org/10.1016/j.pbi.2004.01.015 PMid:15003218 Gomord V, Sourrouille C, Fitchette AC, Bardor M, et al. (2004). Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol. J. 2: 83-100. http://dx.doi.org/10.1111/j.1467-7652.2004.00062.x PMid:17147602 Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, et al. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol. J. 8: 564-587. http://dx.doi.org/10.1111/j.1467-7652.2009.00497.x PMid:20233335 Graef G, LaVallee BJ, Tenopir P, Tat M, et al. (2009). A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol. J. 7: 411-421. http://dx.doi.org/10.1111/j.1467-7652.2009.00408.x PMid:19490504 Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, et al. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat. Biotechnol. 6: 915-922. http://dx.doi.org/10.1038/nbt0888-915 Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, et al. (2009). Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J. Allergy Clin. Immunol. 123: 452-458. http://dx.doi.org/10.1016/j.jaci.2008.09.034 PMid:18996574 Houdebine LM (2009). Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis. 32: 107-121. http://dx.doi.org/10.1016/j.cimid.2007.11.005 PMid:18243312 Hunter AP and Games DE (1994). Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid. Commun. Mass Spectrom. 8: 559-570. http://dx.doi.org/10.1002/rcm.1290080713 PMid:8075429 Jolliffe NA, Craddock CP and Frigerio L (2005). Pathways for protein transport to seed storage vacuoles. Biochem. Soc. Trans. 33: 1016-1018. http://dx.doi.org/10.1042/BST20051016 PMid:16246035 Kantolic AG and Slafer GA (2007). Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. Bot. 99: 925-933. http://dx.doi.org/10.1093/aob/mcm033 PMid:17452381    PMCid:2802919 Karg SR and Kallio PT (2009). The production of biopharmaceuticals in plant systems. Biotechnol. Adv. 27: 879-894. http://dx.doi.org/10.1016/j.biotechadv.2009.07.002 PMid:19647060 Kawakatsu T and Takaiwa F (2010). Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol. J. 8: 939-953. http://dx.doi.org/10.1111/j.1467-7652.2010.00559.x PMid:20731787 Krishnan HB, Kim WS, Jang S and Kerley MS (2009). All three subunits of soybean beta-conglycinin are potential food allergens. J. Agric. Food Chem. 57: 938-943. http://dx.doi.org/10.1021/jf802451g PMid:19138084 L’Hocine L and Boye JI (2007). Allergenicity of soybean: new developments in identification of allergenic proteins, cross-reactivities and hypoallergenization technologies. Crit. Rev. Food Sci. Nutr. 47: 127-143. Larrick JW and Thomas DW (2001). Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 12: 411-418. http://dx.doi.org/10.1016/S0958-1669(00)00236-6 Lee D and Natesan E (2006). Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol. 24: 109-114. http://dx.doi.org/10.1016/j.tibtech.2006.01.006 PMid:16460821 Lienard D, Sourrouille C, Gomord V and Faye L (2007). Pharming and transgenic plants. Biotechnol. Annu. Rev. 13: 115-147. http://dx.doi.org/10.1016/S1387-2656(07)13006-4 Ma JK, Drake PM and Christou P (2003). The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4: 794-805. http://dx.doi.org/10.1038/nrg1177 PMid:14526375 Mari A, Rasi C, Palazzo P and Scala E (2009). Allergen databases: current status and perspectives. Curr. Allergy Asthma Rep. 9: 376-383. http://dx.doi.org/10.1007/s11882-009-0055-9 PMid:19671381 Nielson NC (1985). Structure of Soy Proteins. In: New Protein Foods (Altschul AM and Wilcke HL, eds.). Academic Press, New York. Obembe OO, Popoola JO, Leelavathi S and Reddy SV (2011). Advances in plant molecular farming. Biotechnol. Adv. 29: 210-222. http://dx.doi.org/10.1016/j.biotechadv.2010.11.004 PMid:21115109 Philip R, Darnowski DW, Maughan PJ and Vodkin LO (2001). Processing and localization of bovine beta-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci. 161: 323-335. http://dx.doi.org/10.1016/S0168-9452(01)00420-4 Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812 Robić G, Farinas CS, Rech EL, Bueno SMA, et al. (2006). Downstream process engineering evaluation of transgenic soybean seeds as host for recombinant protein production. Biochem. Eng. J. 32: 7-12. http://dx.doi.org/10.1016/j.bej.2006.08.010 Robić G, Farinas CS, Rech EL and Miranda EA (2010). Transgenic soybean seed as protein expression system: aqueous extraction of recombinant beta-glucuronidase. Appl. Biochem. Biotechnol. 160: 1157-1167. http://dx.doi.org/10.1007/s12010-009-8637-5 PMid:19412577 Roychaudhuri R, Sarath G, Zeece M and Markwell J (2004). Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochim. Biophys. Acta 1699: 207-212. PMid:15158729 Salamone D, Baranao L, Santos C, Bussmann L, et al. (2006). High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J. Biotechnol. 124: 469-472. http://dx.doi.org/10.1016/j.jbiotec.2006.01.005 PMid:16716426 Sethuraman N and Stadheim TA (2006). Challenges in therapeutic glycoprotein production. Curr. Opin. Biotechnol. 17: 341-346. http://dx.doi.org/10.1016/j.copbio.2006.06.010 PMid:16828275 Sewekow E, Kessler LC, Seidel-Morgenstern A and Rothkotter HJ (2008). Isolation of soybean protein P34 from oil bodies using hydrophobic interaction chromatography. BMC Biotechnol. 8: 27. http://dx.doi.org/10.1186/1472-6750-8-27 PMid:18334018    PMCid:2292165 Shevchenko A, Tomas H, Havlis J, Olsen JV, et al. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1: 2856-2860. http://dx.doi.org/10.1038/nprot.2006.468 PMid:17406544 Smith AK and Circle SJ (1938). Peptization of soybean proteins extraction of nitrogenous constituents from oil-bases with and without added slats. Ind. Eng. Chem. 30: 1414-1418. http://dx.doi.org/10.1021/ie50348a014 Smith AK and Circle SJ (1972). Soybeans: Chemistry and Technology. 2nd edn. The AVI Publishing Company, New York. Smith AK, Circle SJ and Brother GH (1938). Peptization of soybean proteins. The effect of neutral salts on the quantity of nitrogenous constituents extracted from oil-free meal. J. Am. Chem. Soc. 60: 1316-1320. http://dx.doi.org/10.1021/ja01273a012 Spök A and Karner S (2008). Plant Molecular Farming. Opportunities and Challenges. Final Report. The Institute for Prospective Technological Studies, Serville. Spök A, Twyman RM, Fischer R, Ma JK, et al. (2008). Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants. Trends Biotechnol. 26: 506-517. Staswick PE, Hermodson MA and Nielsen NC (1981). Identification of the acidic and basic subunit complexes of glycinin. J. Biol. Chem. 256: 8752-8755. PMid:7263683 Stoger E, Ma JK, Fischer R and Christou P (2005). Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16: 167-173. http://dx.doi.org/10.1016/j.copbio.2005.01.005 PMid:15831382 Streatfield SJ (2007). Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5: 2-15. http://dx.doi.org/10.1111/j.1467-7652.2006.00216.x PMid:17207252 Tang GQ, Novitzky WP, Carol GH, Huber SC, et al. (2005). Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J. 44: 433-446. http://dx.doi.org/10.1111/j.1365-313X.2005.02535.x PMid:16236153 Tremblay R, Wang D, Jevnikar AM and Ma S (2010). Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol. Adv. 28: 214-221. http://dx.doi.org/10.1016/j.biotechadv.2009.11.008 PMid:19961918 Vianna GR, Cunha N and Rech E (2011a). Expression and accumulation of heterologous molecules in the protein storage vacuoles of soybean seeds. Protocol Exchange. Available at [http://www.nature.com/protocolexchange/protocols/2012]. Accessed May 10, 2011. Vianna GR, Aragao FJ and Rech EL (2011b). A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max). Genet. Mol. Res. 10: 382-390. http://dx.doi.org/10.4238/vol10-1gmr1058 PMid:21365554 Wilson N, Simpson R and Cooper-Liddell C (2009). Introductory glycosylation analysis using SDS-PAGE and peptide mass fingerprinting. Methods Mol. Biol. 534: 205-212. http://dx.doi.org/10.1007/978-1-59745-022-5_15 PMid:19277550 Xiang P, Haas EJ, Zeece MG, Markwell J, et al. (2004). C-Terminal 23 kDa polypeptide of soybean Gly m Bd 28 K is a potential allergen. Planta 220: 56-63. http://dx.doi.org/10.1007/s00425-004-1313-7 PMid:15252733 Xu J, Ge X and Dolan MC (2011). Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol. Adv. 29: 278-299. PMid:21236330 Zeitlin L, Olmsted SS, Moench TR, Co MS, et al. (1998). A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat. Biotechnol. 16: 1361-1364. http://dx.doi.org/10.1038/4344 PMid:9853620
2010
N. B. Cunha, Araújo, A. C. G., Leite, A., Murad, A. M., Vianna, G. R., and Rech, E. L., Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds, vol. 9. pp. 1163-1170, 2010.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   de Freitas FA, Yunes JA, da Silva MJ, Arruda P, et al. (1994). Structural characterization and promoter activity analysis of the gamma-kafirin gene from sorghum. Mol. Gen. Genet. 245: 177-186. http://dx.doi.org/10.1007/BF00283265 PMid:7816025   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Fiedler U and Conrad U (1995). High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Biotechnology 13: 1090-1093. http://dx.doi.org/10.1038/nbt1095-1090 PMid:9678915   Fischer R, Stoger E, Schillberg S, Christou P, et al. (2004). Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158. http://dx.doi.org/10.1016/j.pbi.2004.01.007 PMid:15003215   Giddings G (2001). Transgenic plants as protein factories. Curr. Opin. Biotechnol. 12: 450-454. http://dx.doi.org/10.1016/S0958-1669(00)00244-5   Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, et al. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U. S. A. 76: 106-110. http://dx.doi.org/10.1073/pnas.76.1.106 PMid:85300 PMCid:382885   Hjerno K (2007). Protein identification by peptide mass fingerprinting. Methods Mol. Biol. 367: 61-75. PMid:17185770   Kusnadi AR, Nikolov ZL and Howard JA (1997). Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol. Bioeng. 56: 473-484. http://dx.doi.org/10.1002/(SICI)1097-0290(19971205)56:5<473::AID-BIT1>3.0.CO;2-F   Larrick JW and Thomas DW (2001). Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 12: 411-418. http://dx.doi.org/10.1016/S0958-1669(00)00236-6   Leite A, Kemper EL, Silva MJ, Luchesi AD, et al. (2000). Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol. Breed. 6: 47-53. http://dx.doi.org/10.1023/A:1009648532210   Ma JK, Drake PM and Christou P (2003). The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4: 794-805. http://dx.doi.org/10.1038/nrg1177 PMid:14526375   Ramírez N, Oramas P, Ayala M, Rodríguez M, et al. (2001). Expression and long-term stability of a recombinant single-chain Fv antibody fragment in transgenic Nicotiana tabacum seeds. Biotechnol. Lett. 23: 47-49. http://dx.doi.org/10.1023/A:1026728721966   Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Schillberg S, Emans N and Fischer R (2002). Antibody molecular farming in plants and plant cells. Phytochem. Rev. 1: 45-54. http://dx.doi.org/10.1023/A:1015880218651   Staub JM, Garcia B, Graves J, Hajdukiewicz PT, et al. (2000). High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18: 333-338. http://dx.doi.org/10.1038/73796 PMid:10700152   Stöger E, Vaquero C, Torres E, Sack M, et al. (2000). Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42: 583-590. http://dx.doi.org/10.1023/A:1006301519427 PMid:10809004   Takaiwa F, Takagi H, Hirose S and Wakasa Y (2007). Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol. J. 5: 84-92. http://dx.doi.org/10.1111/j.1467-7652.2006.00220.x PMid:17207259   Twyman RM, Stoger E, Schillberg S, Christou P, et al. (2003). Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570-578. http://dx.doi.org/10.1016/j.tibtech.2003.10.002 PMid:14624867   Vianna GR, Albino MMC, Dias BBA, de Mesquita Silva L, et al. (2004). Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci. Hortic. 99: 371-378. http://dx.doi.org/10.1016/S0304-4238(03)00107-9   Wang CC and Tsou CL (1991). The insulin A and B chains contain sufficient structural information to form the native molecule. Trends Biochem. Sci. 16: 279-281. http://dx.doi.org/10.1016/0968-0004(91)90114-B   Yoo BY and Chrispeels MJ (1980). The origin of protein bodies in developing soybean cotyledons: a proposal. Protoplasma 103: 201-204. http://dx.doi.org/10.1007/BF01276677   Zheng Y, He M, Hao S and Huang B (1992). The ultrastructural evidence on the origin of protein bodies in the rough endoplasmic reticulum of developing cotyledons of soybean. Ann. Bot. 69: 377-383.