Publications
Found 4 results
Filters: Author is M.C. Quecine [Clear All Filters]
“Agrobacterium-mediated transformation of Fusarium proliferatum”, vol. 15, p. -, 2016.
, “Agrobacterium-mediated transformation of Fusarium proliferatum”, vol. 15, p. -, 2016.
, “Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant #311534/2014-7 and #447265/2014-8) and Fundação Araucária (grant FA-#276/2014), and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) via scholarship to A. Garcia, J.C. Polonio, A.D. Polli, and C.M. Santos.REFERENCESde Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, et al (2012). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz. J. Microbiol. 43: 1562-1575. http://dx.doi.org/10.1590/S1517-83822012000400041 Gans J, Wolinsky M, Dunbar J, et al (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387-1390. http://dx.doi.org/10.1126/science.1112665 Garcia A, Rhoden SA, Bernardi-Wenzel J, Orlandelli RC, et al (2012a). Antimicrobial activity of crude extracts of endophytic fungi isolated from the medicinal plant Sapindus saponaria L. J. Appl. Pharm. Sci. 2: 35-40. García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, et al (2012b). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res. 45: 139-148. http://dx.doi.org/10.4067/S0716-97602012000200006 García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, et al (2013). Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb. Biotechnol. 6: 36-44. http://dx.doi.org/10.1111/j.1751-7915.2012.00358.x Hallmann J and Berg G (2006). Spectrum and population dynamics of bacterial root endophytes. In: Microbial root endophytes (Schulz B, Boyle C and Sieber TN, eds.). Springer-Verlag, Berlin, Heidelberg, 15-31. Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, et al (2016). Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405: 337-355. http://dx.doi.org/10.1007/s11104-016-2826-0 Kemmitt SJ, Wright D, Goulding KWT, Jones DL, et al (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38: 898-911. http://dx.doi.org/10.1016/j.soilbio.2005.08.006 Keswani J, Whitman WB, et al (2001). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int. J. Syst. Evol. Microbiol. 51: 667-678. http://dx.doi.org/10.1099/00207713-51-2-667 Mendes R, Kruijt M, de Bruijn I, Dekkers E, et al (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097-1100. http://dx.doi.org/10.1126/science.1203980 Miguel PSB, Delvaux JC, de Oliveira MNV, Monteiro LCP, et al (2013). Diversity of endophytic bacteria in the fruits of Coffea canephora. Afr. J. Microbiol. Res. 7: 586-594. http://dx.doi.org/10.5897/AJMR12.2036 Morgan JAW and Whipps JM (2001). Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: The rhizosphere. Biochemistry and organic substances at the soil-plant interface. 1st edn. (Pinton R, Varanini Z and Nannipieri P, eds.). Marcel Dekker, New York, 373-409. Nacke H, Thürmer A, Wollherr A, Will C, et al (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6: e17000. http://dx.doi.org/10.1371/journal.pone.0017000 Nielsen AT, Liu WT, Filipe C, GradyLJret al (1999). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65: 1251-1258. Pelczar MJ, Jr., Chan ECS and Krieg NR (2011). Microbiologia: Conceitos e Aplicações. 2nd edn. Pearson Education do Brasil, São Paulo. Pelegrini DD, Tsuzuki JK, Amado CAB, Cortez DAG, et al (2008). Biological activity and isolated compounds in Sapindus saponaria L. and other plants of the genus Sapindus. Lat. Am. J. Pharm. 27: 922-927. Polonio JC, Almeida TT, Garcia A, Mariucci GE, et al (2015). Biotechnological prospecting of foliar endophytic fungi of guaco (Mikania glomerata Spreng.) with antibacterial and antagonistic activity against phytopathogens. Genet. Mol. Res. 14: 7297-7309. http://dx.doi.org/10.4238/2015.July.3.5 Qi X, Wang E, Xing M, Zhao W, et al (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J. Microbiol. Biotechnol. 28: 2257-2265. http://dx.doi.org/10.1007/s11274-012-1033-2 Rhoden SA, Garcia A, Bongiorno VA, Azevedo JL, et al (2012). Antimicrobial activity of crude extracts of endophytic fungi isolated from the medicinal plant Trichilia elegans A Juss. J. Appl. Pharm. Sci. 2: 57-59. Roesch LF, Fulthorpe RR, Riva A, Casella G, et al (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1: 283-290. Schloss PD, Handelsman J, et al (2006). Toward a census of bacteria in soil. PLOS Comput. Biol. 2: e92. http://dx.doi.org/10.1371/journal.pcbi.0020092 Schulz B, Boyle C, et al (2005). The endophytic continuum. Mycol. Res. 109: 661-686. http://dx.doi.org/10.1017/S095375620500273X Silva-Lacerda GR, Santana RC, Vicalvi-Costa MC, Solidônio EG, et al (2016). Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul. Genet. Mol. Res. 15: 15017488. http://dx.doi.org/10.4238/gmr.15017488 Singh BK, Bardgett RD, Smith P, Reay DS, et al (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8: 779-790. http://dx.doi.org/10.1038/nrmicro2439 Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, et al (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS One 9: e99641. http://dx.doi.org/10.1371/journal.pone.0099641
“Eucalyptus growth promotion by endophytic Bacillus spp”, vol. 11, pp. 3711-3720, 2012.
,
Altschul SF, Gish W, Miller W, Myers EW, et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
PMid:2231712
Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, et al. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68: 4906-4914.
http://dx.doi.org/10.1128/AEM.68.10.4906-4914.2002
PMid:12324338 PMCid:126398
Azevedo JL and Araújo WL (2007). Diversity and Applications of Endophytic Fungi Isolated from Tropical Plants. In: Fungi: Multifaceted Microbes (Guangui BN and Deshmukh SK, eds.). Anamaya Publishers New Delhi and CRC Press, Boca Raton, 189-207.
Azevedo JL, Maccheroni W Jr, Pereira JO and Araújo WL (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic. J. Biotechnol. 3: 40-65.
http://dx.doi.org/10.2225/vol3-issue1-fulltext-4
Berg G and Hallmann J (2006). Control of Plant Pathogenic Fungi with Bacterial Endophytes. In: Microbial Root Endophytes (Schulz B, Boyle C and Sieber TN, eds.). Springer-Verlag, Berlin, 53-66.
http://dx.doi.org/10.1007/3-540-33526-9_4
PMid:16482371
Brunetta JMFC, Alfenas AC, Mafia RG and Gomes JM (2007). Avaliação da especificidade de rizobactérias isoladas de diferentes espécies de Pinus sp. Rev. Árvore 31: 1027-1033.
http://dx.doi.org/10.1590/S0100-67622007000600007
Chanway CP (1998). Bacterial endophytes: ecological and practical implications. Sydowia 50: 149-170.
Chun J and Bae KS (2000). Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78: 123-127.
http://dx.doi.org/10.1023/A:1026555830014
PMid:11204764
Dias ACF, Costa FEC, Andreote FD, Lacava PT, et al. (2009). Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol. 25: 189-195.
http://dx.doi.org/10.1007/s11274-008-9878-0
Díaz K, Valiente C, Martínez M, Castillo M, et al. (2009). Root-promoting rhizobacteria in Eucalyptus globules cuttings. World J. Microbiol. Biotechnol. 25: 867-873.
http://dx.doi.org/10.1007/s11274-009-9961-1
Dickson A, Leaf AL and Hosner JF (1960). Quality appraisal of white spruceand white pine seedling stock in nurseries. Forest. Chron. 36: 10-13.
Döbereiner J, Baldani VLD and Baldani JI (1995). Como Isolar e Identificar Bactérias Diazotróficas de Plantas Não- Leguminosas. EMBRAPA-CNPAB, Rio de Janeiro.
PMCid:1236322
Dyszynski G and Sheldon W (2011). RDPquery: A Java Program from the Sapelo Program Microbial Observatory for Automatic Classification of Bacterial 16S rRNA Sequences Based on Ribosomal Database Project Taxonomy and Smith-Waterman Alignment. Avaliable at [http://simo.marsci.uga.edu/public_db/rdp_query.htm]. Accessed September 15, 2011.
Ferreira A (2008). Interação Entre Bactérias Endofíticas e do Rizoplano com Eucalyptus. Master's thesis, Escola Superior de Agricultura "Luiz de Queiroz", USP, Piracicaba.
Ferreira A, Quecine MC, Lacava PT, Oda S, et al. (2008). Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol. Lett. 287: 8-14.
http://dx.doi.org/10.1111/j.1574-6968.2008.01258.x
PMid:18710397
Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
http://dx.doi.org/10.1007/BF01731581
PMid:7463489
Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, et al. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251.
http://dx.doi.org/10.1111/j.1462-2920.2004.00658.x
PMid:15560822
Lis JT (1980). Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods Enzymol. 65: 347-353.
http://dx.doi.org/10.1016/S0076-6879(80)65044-7
Lombard L, Zhou XD, Crous PW, Wingfield BD, et al. (2010). Calonectria species associated with cutting rot of Eucalyptus. Persoonia 24: 1-11.
http://dx.doi.org/10.3767/003158510X486568
PMid:20664755 PMCid:2890164
Long HH, Schmidt DD and Baldwin IT (2008). Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3: e2702.
http://dx.doi.org/10.1371/journal.pone.0002702
PMid:18628963 PMCid:2444036
Mafia RG, Alfenas AC, Ferreira EM, Zarpelon TG, et al. (2005). Crescimento de mudas e produtividade de minijardins clonais de eucalipto tratados com rizobactérias selecionadas. Rev. Árvore 29: 843-851.
http://dx.doi.org/10.1590/S0100-67622005000600002
Nautiyal CS (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganism. FEMS Microbiol. Lett. 170: 265-270.
http://dx.doi.org/10.1111/j.1574-6968.1999.tb13383.x
PMid:9919677
Nunes FV (2004). Isolamento e Identificação de Bactérias Endofíticas de Café (Coffea arabica e Coffea robusta) e suas Aplicações Biotecnológicas. Master's thesis, Universidade de São Paulo, São Paulo.
Patten CL and Glick BR (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801.
http://dx.doi.org/10.1128/AEM.68.8.3795-3801.2002
PMid:12147474 PMCid:124051
Procópio REL (2004). Diversidade de Bactérias Endofíticas de Eucalyptus spp. e Avaliação do seu Potencial Biotecnológico. Doctoral thesis, Escola Superior de Agricultura "Luiz de Queiroz", USP, Piracicaba.
Procópio REL, Araujo WL, Maccheroni W Jr and Azevedo JL (2009). Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet. Mol. Res. 8: 1408-1422.
http://dx.doi.org/10.4238/vol8-4gmr691
PMid:19937585
Rodriguez RJ, White JF Jr, Arnold AE and Redman RS (2009). Fungal endophytes: diversity and functional roles. New Phytol. 182: 314-330.
http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
PMid:19236579
Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
PMid:3447015
Sambrook J, Fritschi EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
Shi Y, Lou K and Li C (2009). Promotion of plant growth by phytohormones-producing endophytic microbes of sugar beet. Biol. Fertil. Soils 45: 645-653.
http://dx.doi.org/10.1007/s00374-009-0376-9
Strobel GA (2002). Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol. 22: 315-333.
http://dx.doi.org/10.1080/07388550290789531
PMid:12487423
Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738
Unterseher M, Reiher A, Finstermeier K and Otto P (2007). Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6: 201-212.
http://dx.doi.org/10.1007/s11557-007-0541-1
Verma VC, Gond SK, Kumar A, Kharwar RN, et al. (2007). The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (neem) from Varanasi (India). Microb. Ecol. 54: 119-125.
http://dx.doi.org/10.1007/s00248-006-9179-9
PMid:17394041
Wang H, Wen K, Zhao X, Wang X, et al. (2009). The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Protect. 28: 634-639.
http://dx.doi.org/10.1016/j.cropro.2009.03.017