Publications

Found 4 results
Filters: Author is G.R. Vianna  [Clear All Filters]
2011
G. R. Vianna, Aragão, F. J. L., and Rech, E. L., A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max), vol. 10, pp. 382-390, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Aragão FJL, Vianna GR, Albino MMC and Rech EL (2002). Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci. 42: 1298-1302. http://dx.doi.org/10.2135/cropsci2002.1298   Aragão FJL, Vianna GR, Carvalheira SBRC and Rech EL (2005). Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci. 168: 1227-1233. http://dx.doi.org/10.1016/j.plantsci.2004.12.024   Artelt P, Grannemann R, Stocking C, Friel J, et al. (1991). The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99: 249-254. http://dx.doi.org/10.1016/0378-1119(91)90134-W   Cheng YQ, Yang J, Xu FP, An LJ, et al. (2009). Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation. Appl. Biochem. Biotechnol. 159: 739-749. http://dx.doi.org/10.1007/s12010-009-8554-7 PMid:19255730   Cunha NB, Araujo AC, Leite A, Murad AM, et al. (2010). Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genet. Mol. Res. 9: 1163-1170. PMid:20589613   Dale PJ (1999). Public concerns over transgenic crops. Genome Res. 9: 1159-1162. http://dx.doi.org/10.1101/gr.9.12.1159 PMid:10613837   Dellaporta SL, Wood J and Hicks JB (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21. http://dx.doi.org/10.1007/BF02712670   Edwards K, Johnstone C and Thompson C (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. http://dx.doi.org/10.1093/nar/19.6.1349 PMid:2030957 PMCid:333874   Fu X, Duc LT, Fontana S, Bong BB, et al. (2000). Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9: 11-19. http://dx.doi.org/10.1023/A:1008993730505 PMid:10853265   Gao XR, Wang GK, Su Q, Wang Y, et al. (2007). Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol. Lett. 29: 1781-1787. http://dx.doi.org/10.1007/s10529-007-9439-x PMid:17609861   Jakowitsch J, Papp I, Moscone EA, van der Winden J, et al. (1999). Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 17: 131-140. http://dx.doi.org/10.1046/j.1365-313X.1999.00357.x PMid:10074712   Liu M, Yang J, Cheng YQ and An LJ (2009). Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette. J. Zhejiang Univ. Sci. B 10: 870-876. http://dx.doi.org/10.1631/jzus.B0920204 PMid:19946950 PMCid:2789521   Miki B and McHugh S (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107: 193-232. http://dx.doi.org/10.1016/j.jbiotec.2003.10.011 PMid:14736458   Muller AE, Kamisugi Y, Gruneberg R, Niedenhof I, et al. (1999). Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J. Mol. Biol. 291: 29-46. http://dx.doi.org/10.1006/jmbi.1999.2957 PMid:10438604   Nunes AC, Vianna GR, Cuneo F, Amaya-Farfan J, et al. (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224: 125-132. http://dx.doi.org/10.1007/s00425-005-0201-0 PMid:16395584   Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Sambrook J, Fritsch EF and Maniats T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.   Sathasivan K, Haughn GW and Murai N (1990). Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18: 2188. http://dx.doi.org/10.1093/nar/18.8.2188 PMid:2336405 PMCid:330714   Tinoco ML, Vianna GR, Abud S, Souza PIM, et al. (2006). Radiation as a tool to remove selective marker genes from transgenic soybean plants. Biol. Plantarum 50: 146-148. http://dx.doi.org/10.1007/s10535-005-0091-9   US Food and Drug Administration (US FDA) (1998). Guidance for Industry: Use of Antibiotic Resistance Marker Genes in Transgenic Plants. Draft Guidance, September 4, Rockville.   Vianna GR, Albino MMC, Dias BBA, Silva LM, et al. (2004). Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci. Hortic. 99: 371-378. http://dx.doi.org/10.1016/S0304-4238(03)00107-9   Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, et al. (2006). Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep. 25: 807-814. http://dx.doi.org/10.1007/s00299-006-0132-7 PMid:16528564   Zhao Y, Qian Q, Wang H and Huang D (2007). Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J. Genet. Genomics 34: 824-835. http://dx.doi.org/10.1016/S1673-8527(07)60093-9
G. R. Vianna, Cunha, N. B., Murad, A. M., and Rech, E. L., Soybeans as bioreactors for biopharmaceuticals and industrial proteins, vol. 10. pp. 1733-1752, 2011.
Abud S, de Souza PI, Vianna GR, Leonardecz E, et al. (2007). Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genet. Mol. Res. 6: 445-452. PMid:17952868 Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441 Barnes S, Shonsey EM, Eliuk SM, Stella D, et al. (2008). High-resolution mass spectrometry analysis of protein oxidations and resultant loss of function. Biochem. Soc. Trans. 36: 1037-1044. http://dx.doi.org/10.1042/BST0361037 PMid:18793185    PMCid:2715854 Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, et al. (2010). Seed-based expression systems for plant molecular farming. Plant Biotechnol. J. 8: 588-606. http://dx.doi.org/10.1111/j.1467-7652.2010.00511.x PMid:20500681 Buhr T, Sato S, Ebrahim F, Xing A, et al. (2002). Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J. 30: 155-163. http://dx.doi.org/10.1046/j.1365-313X.2002.01283.x PMid:12000452 Cavazzoni J, Volk T, Bugbee B and Dougher T (1999). Phasic temperature and photoperiod control for soybean using a modified CROPGRO model. Life Support. Biosph. Sci. 6: 273-278. PMid:11543266 Christou P, McCabe DE and Swain WF (1988). Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol. 87: 671-674. http://dx.doi.org/10.1104/pp.87.3.671 PMid:16666205    PMCid:1054818 Cunha NB, Araujo AC, Leite A, Murad AM, et al. (2010). Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genet. Mol. Res. 9: 1163-1170. PMid:20589613 Cunha NB, Murad AM, Cipriano TM, Araujo AC, et al. (2011a). Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res. 20: 811-826. http://dx.doi.org/10.1007/s11248-010-9460-z PMid:21069461 Cunha NB, Murad AM, Ramos GL, Maranhao AQ, et al. (2011b). Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res. 20: 841-855. http://dx.doi.org/10.1007/s11248-010-9461-y PMid:21069460 Daniell H, Streatfield SJ and Wycoff K (2001). Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6: 219-226. http://dx.doi.org/10.1016/S1360-1385(01)01922-7 Demain AL and Vaishnav P (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27: 297-306. http://dx.doi.org/10.1016/j.biotechadv.2009.01.008 PMid:19500547 Edman P (1949). A method for the determination of amino acid sequence in peptides. Arch. Biochem. 22: 475. PMid:18134557 Fischer R, Stoger E, Schillberg S, Christou P, et al. (2004). Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158. http://dx.doi.org/10.1016/j.pbi.2004.01.007 PMid:15003215 Gleba Y, Klimyuk V and Marillonnet S (2005). Magnifection-a new platform for expressing recombinant vaccines in plants. Vaccine 23: 2042-2048. http://dx.doi.org/10.1016/j.vaccine.2005.01.006 PMid:15755568 Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, et al. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U. S. A. 76: 106-110. http://dx.doi.org/10.1073/pnas.76.1.106 Gomord V and Faye L (2004). Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7: 171-181. http://dx.doi.org/10.1016/j.pbi.2004.01.015 PMid:15003218 Gomord V, Sourrouille C, Fitchette AC, Bardor M, et al. (2004). Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol. J. 2: 83-100. http://dx.doi.org/10.1111/j.1467-7652.2004.00062.x PMid:17147602 Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, et al. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol. J. 8: 564-587. http://dx.doi.org/10.1111/j.1467-7652.2009.00497.x PMid:20233335 Graef G, LaVallee BJ, Tenopir P, Tat M, et al. (2009). A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol. J. 7: 411-421. http://dx.doi.org/10.1111/j.1467-7652.2009.00408.x PMid:19490504 Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, et al. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat. Biotechnol. 6: 915-922. http://dx.doi.org/10.1038/nbt0888-915 Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, et al. (2009). Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J. Allergy Clin. Immunol. 123: 452-458. http://dx.doi.org/10.1016/j.jaci.2008.09.034 PMid:18996574 Houdebine LM (2009). Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis. 32: 107-121. http://dx.doi.org/10.1016/j.cimid.2007.11.005 PMid:18243312 Hunter AP and Games DE (1994). Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid. Commun. Mass Spectrom. 8: 559-570. http://dx.doi.org/10.1002/rcm.1290080713 PMid:8075429 Jolliffe NA, Craddock CP and Frigerio L (2005). Pathways for protein transport to seed storage vacuoles. Biochem. Soc. Trans. 33: 1016-1018. http://dx.doi.org/10.1042/BST20051016 PMid:16246035 Kantolic AG and Slafer GA (2007). Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. Bot. 99: 925-933. http://dx.doi.org/10.1093/aob/mcm033 PMid:17452381    PMCid:2802919 Karg SR and Kallio PT (2009). The production of biopharmaceuticals in plant systems. Biotechnol. Adv. 27: 879-894. http://dx.doi.org/10.1016/j.biotechadv.2009.07.002 PMid:19647060 Kawakatsu T and Takaiwa F (2010). Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol. J. 8: 939-953. http://dx.doi.org/10.1111/j.1467-7652.2010.00559.x PMid:20731787 Krishnan HB, Kim WS, Jang S and Kerley MS (2009). All three subunits of soybean beta-conglycinin are potential food allergens. J. Agric. Food Chem. 57: 938-943. http://dx.doi.org/10.1021/jf802451g PMid:19138084 L’Hocine L and Boye JI (2007). Allergenicity of soybean: new developments in identification of allergenic proteins, cross-reactivities and hypoallergenization technologies. Crit. Rev. Food Sci. Nutr. 47: 127-143. Larrick JW and Thomas DW (2001). Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 12: 411-418. http://dx.doi.org/10.1016/S0958-1669(00)00236-6 Lee D and Natesan E (2006). Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol. 24: 109-114. http://dx.doi.org/10.1016/j.tibtech.2006.01.006 PMid:16460821 Lienard D, Sourrouille C, Gomord V and Faye L (2007). Pharming and transgenic plants. Biotechnol. Annu. Rev. 13: 115-147. http://dx.doi.org/10.1016/S1387-2656(07)13006-4 Ma JK, Drake PM and Christou P (2003). The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4: 794-805. http://dx.doi.org/10.1038/nrg1177 PMid:14526375 Mari A, Rasi C, Palazzo P and Scala E (2009). Allergen databases: current status and perspectives. Curr. Allergy Asthma Rep. 9: 376-383. http://dx.doi.org/10.1007/s11882-009-0055-9 PMid:19671381 Nielson NC (1985). Structure of Soy Proteins. In: New Protein Foods (Altschul AM and Wilcke HL, eds.). Academic Press, New York. Obembe OO, Popoola JO, Leelavathi S and Reddy SV (2011). Advances in plant molecular farming. Biotechnol. Adv. 29: 210-222. http://dx.doi.org/10.1016/j.biotechadv.2010.11.004 PMid:21115109 Philip R, Darnowski DW, Maughan PJ and Vodkin LO (2001). Processing and localization of bovine beta-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci. 161: 323-335. http://dx.doi.org/10.1016/S0168-9452(01)00420-4 Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812 Robić G, Farinas CS, Rech EL, Bueno SMA, et al. (2006). Downstream process engineering evaluation of transgenic soybean seeds as host for recombinant protein production. Biochem. Eng. J. 32: 7-12. http://dx.doi.org/10.1016/j.bej.2006.08.010 Robić G, Farinas CS, Rech EL and Miranda EA (2010). Transgenic soybean seed as protein expression system: aqueous extraction of recombinant beta-glucuronidase. Appl. Biochem. Biotechnol. 160: 1157-1167. http://dx.doi.org/10.1007/s12010-009-8637-5 PMid:19412577 Roychaudhuri R, Sarath G, Zeece M and Markwell J (2004). Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochim. Biophys. Acta 1699: 207-212. PMid:15158729 Salamone D, Baranao L, Santos C, Bussmann L, et al. (2006). High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J. Biotechnol. 124: 469-472. http://dx.doi.org/10.1016/j.jbiotec.2006.01.005 PMid:16716426 Sethuraman N and Stadheim TA (2006). Challenges in therapeutic glycoprotein production. Curr. Opin. Biotechnol. 17: 341-346. http://dx.doi.org/10.1016/j.copbio.2006.06.010 PMid:16828275 Sewekow E, Kessler LC, Seidel-Morgenstern A and Rothkotter HJ (2008). Isolation of soybean protein P34 from oil bodies using hydrophobic interaction chromatography. BMC Biotechnol. 8: 27. http://dx.doi.org/10.1186/1472-6750-8-27 PMid:18334018    PMCid:2292165 Shevchenko A, Tomas H, Havlis J, Olsen JV, et al. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1: 2856-2860. http://dx.doi.org/10.1038/nprot.2006.468 PMid:17406544 Smith AK and Circle SJ (1938). Peptization of soybean proteins extraction of nitrogenous constituents from oil-bases with and without added slats. Ind. Eng. Chem. 30: 1414-1418. http://dx.doi.org/10.1021/ie50348a014 Smith AK and Circle SJ (1972). Soybeans: Chemistry and Technology. 2nd edn. The AVI Publishing Company, New York. Smith AK, Circle SJ and Brother GH (1938). Peptization of soybean proteins. The effect of neutral salts on the quantity of nitrogenous constituents extracted from oil-free meal. J. Am. Chem. Soc. 60: 1316-1320. http://dx.doi.org/10.1021/ja01273a012 Spök A and Karner S (2008). Plant Molecular Farming. Opportunities and Challenges. Final Report. The Institute for Prospective Technological Studies, Serville. Spök A, Twyman RM, Fischer R, Ma JK, et al. (2008). Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants. Trends Biotechnol. 26: 506-517. Staswick PE, Hermodson MA and Nielsen NC (1981). Identification of the acidic and basic subunit complexes of glycinin. J. Biol. Chem. 256: 8752-8755. PMid:7263683 Stoger E, Ma JK, Fischer R and Christou P (2005). Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16: 167-173. http://dx.doi.org/10.1016/j.copbio.2005.01.005 PMid:15831382 Streatfield SJ (2007). Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5: 2-15. http://dx.doi.org/10.1111/j.1467-7652.2006.00216.x PMid:17207252 Tang GQ, Novitzky WP, Carol GH, Huber SC, et al. (2005). Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J. 44: 433-446. http://dx.doi.org/10.1111/j.1365-313X.2005.02535.x PMid:16236153 Tremblay R, Wang D, Jevnikar AM and Ma S (2010). Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol. Adv. 28: 214-221. http://dx.doi.org/10.1016/j.biotechadv.2009.11.008 PMid:19961918 Vianna GR, Cunha N and Rech E (2011a). Expression and accumulation of heterologous molecules in the protein storage vacuoles of soybean seeds. Protocol Exchange. Available at [http://www.nature.com/protocolexchange/protocols/2012]. Accessed May 10, 2011. Vianna GR, Aragao FJ and Rech EL (2011b). A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max). Genet. Mol. Res. 10: 382-390. http://dx.doi.org/10.4238/vol10-1gmr1058 PMid:21365554 Wilson N, Simpson R and Cooper-Liddell C (2009). Introductory glycosylation analysis using SDS-PAGE and peptide mass fingerprinting. Methods Mol. Biol. 534: 205-212. http://dx.doi.org/10.1007/978-1-59745-022-5_15 PMid:19277550 Xiang P, Haas EJ, Zeece MG, Markwell J, et al. (2004). C-Terminal 23 kDa polypeptide of soybean Gly m Bd 28 K is a potential allergen. Planta 220: 56-63. http://dx.doi.org/10.1007/s00425-004-1313-7 PMid:15252733 Xu J, Ge X and Dolan MC (2011). Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol. Adv. 29: 278-299. PMid:21236330 Zeitlin L, Olmsted SS, Moench TR, Co MS, et al. (1998). A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat. Biotechnol. 16: 1361-1364. http://dx.doi.org/10.1038/4344 PMid:9853620
2010
N. B. Cunha, Araújo, A. C. G., Leite, A., Murad, A. M., Vianna, G. R., and Rech, E. L., Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds, vol. 9. pp. 1163-1170, 2010.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   de Freitas FA, Yunes JA, da Silva MJ, Arruda P, et al. (1994). Structural characterization and promoter activity analysis of the gamma-kafirin gene from sorghum. Mol. Gen. Genet. 245: 177-186. http://dx.doi.org/10.1007/BF00283265 PMid:7816025   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Fiedler U and Conrad U (1995). High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Biotechnology 13: 1090-1093. http://dx.doi.org/10.1038/nbt1095-1090 PMid:9678915   Fischer R, Stoger E, Schillberg S, Christou P, et al. (2004). Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158. http://dx.doi.org/10.1016/j.pbi.2004.01.007 PMid:15003215   Giddings G (2001). Transgenic plants as protein factories. Curr. Opin. Biotechnol. 12: 450-454. http://dx.doi.org/10.1016/S0958-1669(00)00244-5   Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, et al. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U. S. A. 76: 106-110. http://dx.doi.org/10.1073/pnas.76.1.106 PMid:85300 PMCid:382885   Hjerno K (2007). Protein identification by peptide mass fingerprinting. Methods Mol. Biol. 367: 61-75. PMid:17185770   Kusnadi AR, Nikolov ZL and Howard JA (1997). Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol. Bioeng. 56: 473-484. http://dx.doi.org/10.1002/(SICI)1097-0290(19971205)56:5<473::AID-BIT1>3.0.CO;2-F   Larrick JW and Thomas DW (2001). Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 12: 411-418. http://dx.doi.org/10.1016/S0958-1669(00)00236-6   Leite A, Kemper EL, Silva MJ, Luchesi AD, et al. (2000). Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol. Breed. 6: 47-53. http://dx.doi.org/10.1023/A:1009648532210   Ma JK, Drake PM and Christou P (2003). The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4: 794-805. http://dx.doi.org/10.1038/nrg1177 PMid:14526375   Ramírez N, Oramas P, Ayala M, Rodríguez M, et al. (2001). Expression and long-term stability of a recombinant single-chain Fv antibody fragment in transgenic Nicotiana tabacum seeds. Biotechnol. Lett. 23: 47-49. http://dx.doi.org/10.1023/A:1026728721966   Rech EL, Vianna GR and Aragao FJ (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Schillberg S, Emans N and Fischer R (2002). Antibody molecular farming in plants and plant cells. Phytochem. Rev. 1: 45-54. http://dx.doi.org/10.1023/A:1015880218651   Staub JM, Garcia B, Graves J, Hajdukiewicz PT, et al. (2000). High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18: 333-338. http://dx.doi.org/10.1038/73796 PMid:10700152   Stöger E, Vaquero C, Torres E, Sack M, et al. (2000). Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42: 583-590. http://dx.doi.org/10.1023/A:1006301519427 PMid:10809004   Takaiwa F, Takagi H, Hirose S and Wakasa Y (2007). Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol. J. 5: 84-92. http://dx.doi.org/10.1111/j.1467-7652.2006.00220.x PMid:17207259   Twyman RM, Stoger E, Schillberg S, Christou P, et al. (2003). Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570-578. http://dx.doi.org/10.1016/j.tibtech.2003.10.002 PMid:14624867   Vianna GR, Albino MMC, Dias BBA, de Mesquita Silva L, et al. (2004). Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci. Hortic. 99: 371-378. http://dx.doi.org/10.1016/S0304-4238(03)00107-9   Wang CC and Tsou CL (1991). The insulin A and B chains contain sufficient structural information to form the native molecule. Trends Biochem. Sci. 16: 279-281. http://dx.doi.org/10.1016/0968-0004(91)90114-B   Yoo BY and Chrispeels MJ (1980). The origin of protein bodies in developing soybean cotyledons: a proposal. Protoplasma 103: 201-204. http://dx.doi.org/10.1007/BF01276677   Zheng Y, He M, Hao S and Huang B (1992). The ultrastructural evidence on the origin of protein bodies in the rough endoplasmic reticulum of developing cotyledons of soybean. Ann. Bot. 69: 377-383.