Publications

Found 1 results
Filters: Author is R.G. Chen  [Clear All Filters]
2012
W. L. Guo, Chen, R. G., Gong, Z. H., Yin, Y. X., Ahmed, S. S., and He, Y. M., Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress, vol. 11, pp. 4063-4080, 2012.
Aebi H (1984). Catalase in vitro. Methods Enzymol. 105: 121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3   Arrigoni O, Dipierro S and Borraccino G (1981). Ascorbate free radical reductase; a key enzyme of the ascorbic acid system. FEBS Lett. 125: 242-244. http://dx.doi.org/10.1016/0014-5793(81)80729-6   Bellaire BA, Carmody J, Braud J, Gossett DR, et al. (2000). Involvement of abscisic acid-dependent and -independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic. Res. 33: 531-545. http://dx.doi.org/10.1080/10715760000301071 PMid:11200086   Bueno P, Piqueras A, Kurepa J, Savouré A, et al. (1998). Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 138: 27-34. http://dx.doi.org/10.1016/S0168-9452(98)00154-X   de Azevedo Neto AD, Prisco JT, Eneas-Filho J, Medeiros JV, et al. (2005). Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162: 1114-1122. http://dx.doi.org/10.1016/j.jplph.2005.01.007 PMid:16255169   Dhindsa RS, Plumb-Dhindsa P and Thorpe TA (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93-101. http://dx.doi.org/10.1093/jxb/32.1.93   Ding W, Song L, Wang X and Bi Y (2010). Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol. Plantarum 54: 607-613. http://dx.doi.org/10.1007/s10535-010-0110-3   Ghassemian M, Lutes J, Chang HS, Lange I, et al. (2008). Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry 69: 2899-2911. http://dx.doi.org/10.1016/j.phytochem.2008.09.020 PMid:19007950   Giannopolitis CN and Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59: 309-314. http://dx.doi.org/10.1104/pp.59.2.309 PMid:16659839 PMCid:542387   Griffith OW (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207-212. http://dx.doi.org/10.1016/0003-2697(80)90139-6   Hammerschmidt R, Nuckles EM and Kuc J (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20: 73-82. http://dx.doi.org/10.1016/0048-4059(82)90025-X   Hodges DM, Lester GE, Munro KD and Toivonen PM (2004). Oxidative stress: importance for postharvest quality. HortScience 39: 924-929.   Hung KT and Kao CH (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J. Plant Physiol. 160: 871-879. http://dx.doi.org/10.1078/0176-1617-01118 PMid:12964863   Hung KT and Kao CH (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J. Plant Physiol. 161: 1347-1357. http://dx.doi.org/10.1016/j.jplph.2004.05.011 PMid:15658805   Jiang M and Zhang J (2002). Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic. Res. 36: 1001-1015. http://dx.doi.org/10.1080/1071576021000006563 PMid:12448826   Korkmaz A, Korkmaz Y and Demirkiran AR (2010). Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 67: 495-501. http://dx.doi.org/10.1016/j.envexpbot.2009.07.009   Le Martret B, Poage M, Shiel K, Nugent GD, et al. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 9: 661-673. http://dx.doi.org/10.1111/j.1467-7652.2011.00611.x PMid:21450042   Lee DH and Lee CB (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159: 75-85. http://dx.doi.org/10.1016/S0168-9452(00)00326-5   Li Q, Yu B, Gao Y, Dai AH, et al. (2011). Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. J. Plant Physiol. 168: 927-934. http://dx.doi.org/10.1016/j.jplph.2010.11.025 PMid:21353326   Li W, Qi L, Lin X, Chen H, et al. (2009). The expression of manganese superoxide dismutase gene from Nelumbo nucifera responds strongly to chilling and oxidative stresses. J. Integr. Plant Biol. 51: 279-286. http://dx.doi.org/10.1111/j.1744-7909.2008.00790.x PMid:19261071   Li Y, Liu Y and Zhang JG (2010). Advances in the research on the AsA-GSH cycle in horticultural crops. Front. Agric. China 4: 84-90. http://dx.doi.org/10.1007/s11703-009-0089-8   Liu ZJ, Guo YK and Bai JG (2010). Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J. Plant Growth Regul. 29: 171-183. http://dx.doi.org/10.1007/s00344-009-9121-8   Logan BA, Grace SC, Adams WW and Demmig-Adams B (1998). Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116: 9-17. http://dx.doi.org/10.1007/PL00013823   Ma XW, Ma FW, Mi YF, Ma YH, et al. (2008). Morphological and physiological responses of two contrasting malus species to exogenous abscisic acid application. Plant Growth Regul. 56: 77-87. http://dx.doi.org/10.1007/s10725-008-9287-2   Mukherjee SP and Choudhuri MA (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol. Plant. 58: 166-170. http://dx.doi.org/10.1111/j.1399-3054.1983.tb04162.x   Nakano Y and Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.   Nayyar H, Bains TS and Kumar S (2005). Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ. Exp. Bot. 54: 275-285. http://dx.doi.org/10.1016/j.envexpbot.2004.09.007   Schaedle M (1977). Chloroplast glutathione reductase. Plant Physiol. 59: 1011-1012. http://dx.doi.org/10.1104/pp.59.5.1011 PMid:16659940 PMCid:543356   Selote DS and Khanna-Chopra R (2006). Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol. Plant. 127: 494-506. http://dx.doi.org/10.1111/j.1399-3054.2006.00678.x   Shan C and Liang Z (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 178: 130-139. http://dx.doi.org/10.1016/j.plantsci.2009.11.002   Stevens R, Page D, Gouble B, Garchery C, et al. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ. 31: 1086-1096. http://dx.doi.org/10.1111/j.1365-3040.2008.01824.x PMid:18433441   Verslues PE and Zhu JK (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans. 33: 375-379. http://dx.doi.org/10.1042/BST0330375 PMid:15787610   Wan H, Yuan W, Ruan M, Ye Q, et al. (2011). Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem. Biophys. Res. Commun. 416: 24-30. http://dx.doi.org/10.1016/j.bbrc.2011.10.105 PMid:22086175   Wang YL, Ma FW, Li MJ, Liang D, et al. (2011). Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul. 64: 63-74. http://dx.doi.org/10.1007/s10725-010-9537-y   Wang Z, Xiao Y, Chen W, Tang K, et al. (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J. Integr. Plant Biol. 52: 400-409. http://dx.doi.org/10.1111/j.1744-7909.2010.00921.x PMid:20377702   Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, et al. (2010). Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30: 222-230. http://dx.doi.org/10.3109/07388551.2010.487186 PMid:20572794   Zhang W, Jiang B, Li W, Song H, et al. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci. Hortic. 122: 200-208. http://dx.doi.org/10.1016/j.scienta.2009.05.013   Zhang Y, Tang HR, Luo Y and Hou YX (2009). Responses of antioxidant enzymes and compounds in strawberry (Fragaria x ananassa 'Toyonaka') to cold stress. New Zeal J. Crop Hort. 37: 383-390. http://dx.doi.org/10.1080/01140671.2009.9687594   Zhou BY, Guo ZF and Liu ZL (2005). Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Sci. 45: 599-605. http://dx.doi.org/10.2135/cropsci2005.0599